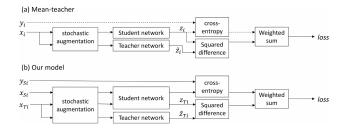
Self-Ensembling for Visual Domain Adaptation

French et al., ICLR 2018

Outline

- This paper explores the use of self-ensembling (or teacher-student) model for domain adaptation
 - consistency regularization: minimizing the distance between student and teacher network's predictions
 - * student network (weights) is the current state of the model
 - ★ teacher network (weights) is the moving average of all previous states of the model
 - consistency regularization is applied on the unlabeled target data
- Ad-hoc techniques used in this model
 - confidence threshold to filter out teacher network's poor predictions
 - modulating normalization statistics of two domains


Teacher-Student Model with Consistency Regularization

• Consistency regularization: minimizing the distance between student and teacher network's predictions

$$L_c(x_{\rm ul},\theta) = \mathcal{L}(p(y|x_{\rm ul};\theta), \ p^+(y|x_{\rm ul};\theta^+))$$

- Teacher and student networks
 - \blacktriangleright weights θ of the student network p is the current state of the main network and is updated via back-propagation
 - \blacktriangleright weights θ^+ of the teacher network p^+ is an moving average of the past states of the network
 - * $\theta^+ = \alpha \theta^+ + (1 \alpha) \theta$, where θ is the current parameters
 - $\star~\theta^+$ is first initialized to be 0

Teacher-Student Model for UDA

- This paper proposes a simple application of mean teacher model to UDA, without use of domain adaptation
 - minimizing the task objective (i.e. cross-entropy) with source labeled data
 - minimizing the consistency regularization with target unlabeled data
 - update student and source accordingly

Ad-hoc Techniques for UDA

- Confidence threshold to discard poor teacher network's predictions
 - for the first few epochs, the teacher network has not accumulated enough past weights and is poor in making predictions
 - to mitigate this problem, the paper sets confidence threshold to select only confident predictions (based on the output softmax probability)
- Modulating normalization statistics of two domains
 - batch norm layers are typically used to standardize the input distribution into network layers that help improve the performance significantly
 - batch norm statistics are computed based on training dataset during training and use that statistics for normalization in inference
 - however, because of the nature of domain adaptation, the statistics of source and target domains are different from one another
 - only statistics for target domain is needed during inference, thus this paper creates separated vectors for these statistics, everything else stays the same

Thank you !

Image Classification Benchmark

	USPS – MNIST	MNIST - USPS	SVHN - MNIST	MNIST - SVHN	CIFAR - STL	STL – CIFAR	Syn Digits - SVHN	Syn Signs - GTSRB
TRAIN ON SOU	RCE							
SupSrc^*	77.55	82.03	66.5	25.44	72.84	51.88	86.86	96.95
	± 0.8	± 1.16	± 1.93	± 2.8	± 0.61	± 1.44	± 0.86	± 0.36
SupSrc+TF	77.53	95.39	68.65	24.86	75.2	59.06	87.45	97.3
	± 4.63	± 0.93	± 1.5	± 3.29	± 0.28	± 1.02	± 0.65	± 0.16
SupSrc+TFA	91.97	96.25	71.73	28.69	75.18	59.38	87.16	98.02
	± 2.15	± 0.54	± 5.73	± 1.59	± 0.76	± 0.58	± 0.85	± 0.20
Specific aug. ^b	-	-	-	$61.99 \\ \pm 3.9$	-	-	-	-
RevGrad ^a ^[1]	74.01	91.11	73.91	35.67	66.12	56.91	91.09	88.65
DCRN ^[2]	73.67	91.8	81.97	40.05	66.37	58.65	_	_
G2A [3]	90.8	92.5	84.70	36.4	-	-	_	_
ADDA [4]	90.1	89.4	76.00	-	_			
ATT ^[5]	30.1	-	86.20	52.8	_		93.1	96.2
SBADA-GAN ^[6]	97.60	95.04	76.14	61.08			30.1	50.2
ADA [7]	-	-	97.6	-	_	_	91.86	
OUR RESULTS								
MT+TF	98.07	98.26	99.18	13.96°	80.08	18.3	15.94	98.63
	± 2.82	± 0.11	± 0.12	± 4.41	± 0.25	± 9.03	± 0.0	± 0.09
$\mathrm{MT}\mathrm{+CT}^*$	92.35	88.14	93.33	33.87 ^c	77.53	71.65	96.01	98.53
	± 8.61	± 0.34	± 5.88	± 4.02	± 0.11	± 0.67	± 0.01	± 0.15
$_{\rm MT+CT+TF}$	97.28	98.13	98.64	34.15 ^c	79.73	74.24	96.51	98.66
	± 2.74	± 0.17	± 0.42	± 3.56	± 0.45	± 0.46	± 0.08	± 0.12
MT+CT+TFA	99.54	98.23	99.26	37.49 ^c	80.09	69.86	97.11	99.37
	± 0.04	± 0.13	± 0.05	± 2.44	± 0.31	± 1.97	± 0.04	± 0.09
Specific aug. ^b	_	-	_	97.0°	-	-	_	_
				± 0.06				
TRAIN ON TAR	GET							
${\rm SupTgt}^*$	99.53	97.29	99.59	95.7	67.75	88.86	95.62	98.49
	± 0.02	± 0.2	± 0.08	± 0.13	± 2.23	± 0.38	± 0.2	± 0.32
$_{\rm SupTgt+TF}$	99.62	97.65	99.61	96.19	70.98	89.83	96.18	98.64
	± 0.04	± 0.17	± 0.04	± 0.1	± 0.79	± 0.39	± 0.09	± 0.09
$_{\rm SupTgt+TFA}$	99.62	97.83	99.59	96.65	70.03	90.44	96.59	99.22
	± 0.03	± 0.17	± 0.06	± 0.11	± 1.13	± 0.38	± 0.09	± 0.22
Specific aug. ^b	-	-		97.16	_	_	-	_
				± 0.05				