Multiple Source Domain Adaptation with Adversarial
Training of Neural Networks

Zhao et al., NeurlPS 2018

1/7

Outline

@ The paper is an extension of domain alignment (i.e. DANN) over
multiple source domains

@ Highlight the difference in the theorems, bounding on target error, for
two domains vs many domains, leading to the implementation of the
model

@ There are few ways to extend this paper,

> it can be combined with other current advanced DA models, and or
> it can be straightforwardly applied other tasks, e.g., cross-lingual

2/7

Bounding on Target Error on Two Domains Adaptation

Theorem

Let H be a hypothesis class. If U* and U' are source and target samples
respectively, then for any ¢ € (0, 1), with the probability at least 1 — ¢

1.
e (h, fH) < (h, f°) + §dHAH(US,ut) + * + const

where * = mingey €4 (h, f*) + €'(h, f!) is the optimal joint error of both
source and target domains

@ Assumptions
> the two domains are aligned — train domain adversarial adaptation
» good enough classifier for both domains simultaneously — current issue
o With the assumptions, the target error is bounded by
» source error €(h, f*) — train classifier on source samples
» distance between two domain distributions when they are aligned
%dAHAH(Z/{S,Z/It) — train domain adversarial adaptation

» optimal joint error of both domains * — often ignored because of the

assumption
3/7

Bounding on Target Error on Multiple Domains Adaptation

Theorem

Let H be a hypothesis class. If {U*'}X | are multiple source samples and
U are target samples respectively, then for any 6 € (0, 1), with the
probability at least 1 — §

1. :
€' (h, f) < max[e®(h, f5') + idHAH(Z/{S’Z,Ut)] + A* + const

where * = minycy (max; €¥(h, £5%) Lt (h, f!) is the optimal joint error of
source domains and target domain

@ Similar to two domains adaptations, this model tries to align all
domains by minimizing the worst domain max error of
» source error

» distance between two distributions between the source domain and
target domain

@ This bound is loose one

@ There are other models trying to make better weighted combination
the above errors 4/7

Implementation

o First part, similar to DANN, insert gradient reversal layer (GRL)
between the encoder and domain classifier

sdomains, tdomains = [], []

for i in range(self.num_domains):
sdomains.append(F.log_softmax(self.domains[i](self.grls[i](sh_relu[i])), dim=1))
tdomains.append(F.log_softmax(self.domains[i](self.grls[i](th_relu)), dim=1))

return logprobs, sdomains, tdomains

@ Second part, choosing the worst domain to minimize

losses = torch.stack([F.nll_loss(logprobs[j], ys[j]) for j in range(num_domains)])
domain_losses = torch.stack([F.nll_loss(sdomains[j], slabels) +
F.nll_loss(tdomains[j], tlabels) for j in range(num_domains)])
Different final loss function depending on different training modes.
if mode == "maxmin":
loss = torch.max(losses) + mu * torch.min(domain_losses)
elif mode == "dynamic":

loss = torch.log(torch.sum(torch.exp(gamma * (losses + mu * domain_losses)))) / gamma

> two options: hardmax vs softmax

5/7

Benchmark

@ Sentiment Analysis

] MDANSs
Train/Test || MLPNet | mSDA | sDANN | cDANN HoMax | S-Max
D+E+K/B 0.7655 | 0.7698 | 0.7650 | 0.7789 | 0.7845 | 0.7863
B+E+K/D 0.7588 | 0.7861 | 0.7732 | 0.7886 | 0.7797 | 0.8065
B+D+K/E 0.8460 | 0.8198 | 0.8381 0.8491 | 0.8483 | 0.8534
B+D+E/K 0.8545 | 0.8426 | 0.8433 | 0.8639 | 0.8580 | 0.8626

@ Image Classification
|| S | s | o | ot [W] T
Sv+Mm+Sy/Mt 0.964 0.967 0.938 0.925 0.976 0.979 0.987
Mt+Sv+Sy/Mm 0.519 0.591 0.561 0.651 0.663 0.687 0.901
Mm+Mt+Sy/Sv 0.814 0.818 0.771 0.776 0.802 0.816 0.898

6/7

Thank you !

