Multiple Source Domain Adaptation with Adversarial Training of Neural Networks

Zhao et al., NeurIPS 2018

Outline

- The paper is an extension of domain alignment (i.e. DANN) over multiple source domains
- Highlight the difference in the theorems, *bounding on target error*, for two domains vs many domains, leading to the implementation of the model
- There are few ways to extend this paper,
 - ▶ it can be combined with other current advanced DA models, and or
 - it can be straightforwardly applied other tasks, e.g., cross-lingual

Bounding on Target Error on Two Domains Adaptation

Theorem

Let \mathcal{H} be a hypothesis class. If \mathcal{U}^s and \mathcal{U}^t are source and target samples respectively, then for any $\delta \in (0, 1)$, with the probability at least $1 - \delta$

$$\epsilon^t(h, f^t) \leq \epsilon^s(h, f^s) + \frac{1}{2} \hat{d}_{\mathcal{H} \Delta \mathcal{H}}(\mathcal{U}^s, \mathcal{U}^t) + \lambda^* + \textit{const}$$

where $\lambda^* = \min_{h \in \mathcal{H}} \epsilon^s(h, f^s) + \epsilon^t(h, f^t)$ is the optimal joint error of both source and target domains

- Assumptions
 - \blacktriangleright the two domains are aligned \rightarrow train domain adversarial adaptation
 - good enough classifier for both domains simultaneously \rightarrow current issue
- With the assumptions, the target error is bounded by
 - \blacktriangleright source error $\epsilon^s(h,f^s) \rightarrow$ train classifier on source samples
 - distance between two domain distributions when they are aligned $\frac{1}{2}\hat{d}_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{U}^s,\mathcal{U}^t) \rightarrow \text{train domain adversarial adaptation}$
 - ▶ optimal joint error of both domains $\lambda^* \rightarrow$ often ignored because of the assumption

Bounding on Target Error on Multiple Domains Adaptation

Theorem

Let \mathcal{H} be a hypothesis class. If $\{\mathcal{U}^{s,i}\}_{i=1}^{K}$ are multiple source samples and \mathcal{U}^{t} are target samples respectively, then for any $\delta \in (0,1)$, with the probability at least $1-\delta$

$$\epsilon^{t}(h, f^{t}) \leq \max_{i} [\epsilon^{s}(h, f^{s,i}) + \frac{1}{2} \hat{d}_{\mathcal{H} \Delta \mathcal{H}}(\mathcal{U}^{s,i}, \mathcal{U}^{t})] + \lambda^{*} + \textit{const}$$

where $\lambda^* = \min_{h \in \mathcal{H}} (\max_i \epsilon^s(h, f^{s,i})_+ \epsilon^t(h, f^t))$ is the optimal joint error of source domains and target domain

- Similar to two domains adaptations, this model tries to align all domains by minimizing the **worst domain** max error of
 - source error
 - distance between two distributions between the source domain and target domain
- This bound is loose one
- There are other models trying to make better weighted combination the above errors

Implementation

• First part, similar to DANN, insert **gradient reversal layer** (GRL) between the encoder and domain classifier

```
sdomains, tdomains = [], []
for i in range(self.num_domains):
    sdomains.append(F.log_softmax(self.domains[i](self.grls[i](sh_relu[i])), dim=1))
    tdomains.append(F.log_softmax(self.domains[i](self.grls[i](th_relu)), dim=1))
return logprobs, sdomains, tdomains
```

• Second part, choosing the worst domain to minimize

two options: hardmax vs softmax

Benchmark

• Sentiment Analysis

Train/Test	MLPNet	mSDA	sDANN	cDANN	MDANs	
				CDAININ	H-Max	S-Max
D+E+K/B	0.7655	0.7698	0.7650	0.7789	0.7845	0.7863
B+E+K/D	0.7588	0.7861	0.7732	0.7886	0.7797	0.8065
B+D+K/E	0.8460	0.8198	0.8381	0.8491	0.8483	0.8534
B+D+E/K	0.8545	0.8426	0.8433	0.8639	0.8580	0.8626

• Image Classification

Train/Test	best-Single	best-Single	Combine	Combine	MDAN		Target
	Source	DANN	Source	DANN	Hard-Max	Soft-Max	Only
Sv+Mm+Sy/Mt	0.964	0.967	0.938	0.925	0.976	0.979	0.987
Mt+Sv+Sy/Mm	0.519	0.591	0.561	0.651	0.663	0.687	0.901
Mm+Mt+Sy/Sv	0.814	0.818	0.771	0.776	0.802	0.816	0.898

Thank you !