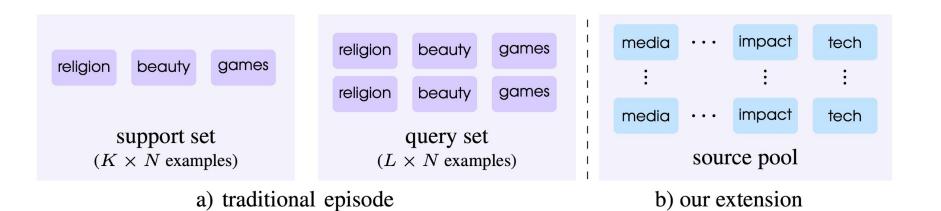
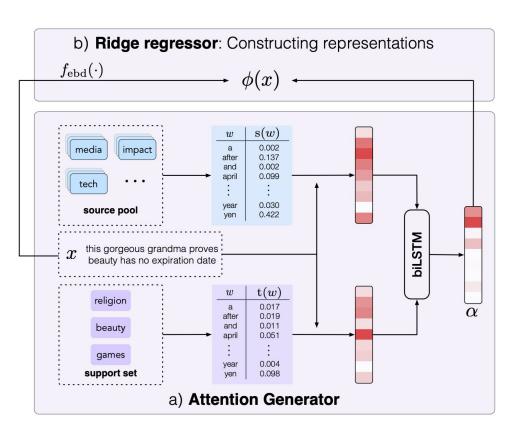
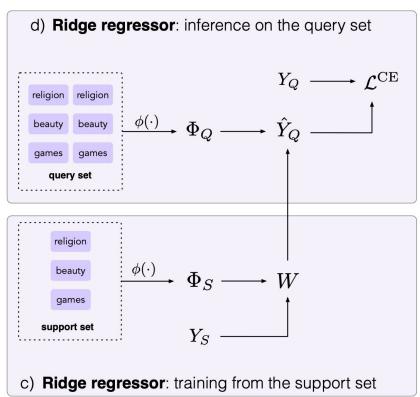
Few-shot Text Classification with Distributional Signatures


Yujia Bao, Menghua Wu, Shiyu Chang, Regina Barzilay

ICLR 2020


Motivation


- 1. In meta-learning, learning soly from word is not enough
 - a. Matching information
 - b. Interaction
 - c. Underlying distribution
- 2. Model word's distributional signatures across classes
- 3. Using this distributional signature as attention weight

Settings

Framework

Attention Generator

Distribution from the pool

$$s(x_i) \coloneqq \frac{\varepsilon}{\varepsilon + P(x_i)}$$

Distribution learned from the support set

$$t(x_i) \coloneqq \mathcal{H}(P(y \mid x_i))^{-1}$$

Attention weight learned from the support set

$$h = ext{biLSTM}([ext{s}(x); ext{t}(x)])$$
 $lpha_i \coloneqq rac{\exp{(v^T h_i)}}{\sum_j \exp{(v^T h_j)}}$

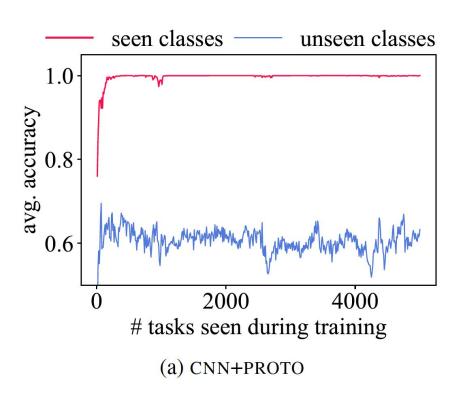
Ridge regressor

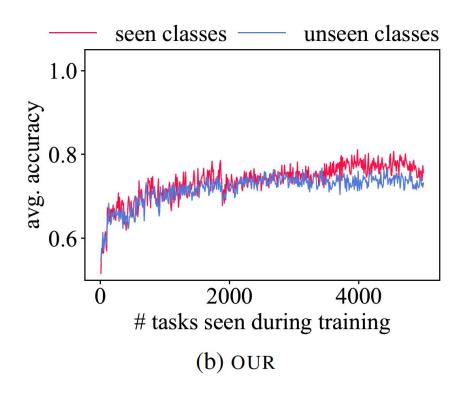
Construct sentence representation

$$\phi(x) \coloneqq \sum_i \alpha_i \cdot f_{\mathrm{ebd}}(x_i)$$

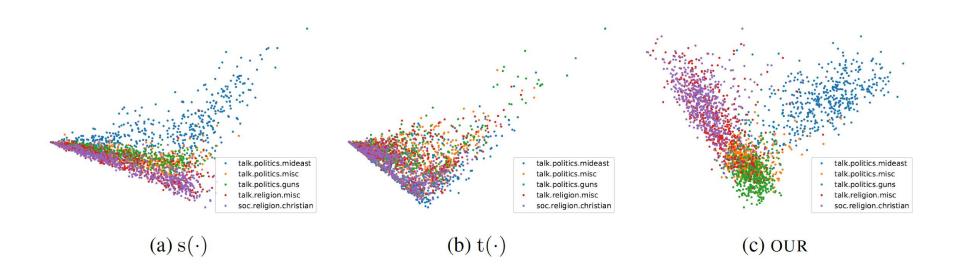
Learn from support set

$$\mathcal{L}^{RR}(W) \coloneqq \left\| \Phi_S W - Y_S \right\|_F^2 + \lambda \left\| W \right\|_F^2$$


$$W = \Phi_S^T (\Phi_S \Phi_S^T + \lambda I)^{-1} Y_S$$


Predict on query set

$$\hat{Y}_Q = a\Phi_Q W + b$$


Method		20 News		Amazon		HuffPost		RCV1		Reuters		FewRel		Average	
Rep.	Alg.	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot
AVG	NN	33.9	45.8	46.7	60.3	31.4	41.5	43.7	60.8	56.5	80.5	47.5	60.6	43.3	58.2
IDF	NN	38.8	51.9	51.4	67.1	31.5	42.3	41.9	58.2	57.8	82.9	46.8	60.6	44.7	60.5
CNN	FT	33.0	47.1	45.7	63.9	32.4	44.1	40.3	62.3	70.9	91.0	54.0	71.1	46.0	63.2
AVG	PROTO	36.2	45.4	37.2	51.9	35.6	41.6	28.4	31.2	59.5	68.1	44.0	46.5	40.1	47.4
IDF	PROTO	37.8	46.5	41.9	59.2	34.8	50.2	32.1	35.6	61.0	72.1	43.0	61.9	41.8	54.2
CNN	PROTO	29.6	35.0	34.0	44.4	33.4	44.2	28.4	29.3	65.2	74.3	49.7	65.1	40.1	48.7
AVG	MAML	33.7	43.9	39.3	47.2	36.1	49.6	39.9	50.6	54.6	62.5	43.8	57.8	41.2	51.9
IDF	MAML	37.2	48.6	43.6	62.4	38.9	53.7	42.5	54.1	61.5	72.0	48.2	65.8	45.3	59.4
CNN	MAML	28.9	36.7	35.3	43.7	34.1	45.8	39.0	51.1	66.6	85.0	51.7	66.9	42.6	54.9
AVG	RR	37.6	57.2	50.2	72.7	36.3	54.8	48.1	72.6	63.4	90.0	53.2	72.2	48.1	69.9
IDF	RR	44.8	64.3	60.2	79.7	37.6	59.5	48.6	72.8	69.1	93.0	55.6	75.3	52.6	74.1
CNN	RR	32.2	44.3	37.3	53.8	37.3	49.9	41.8	59.4	71.4	87.9	56.8	71.8	46.1	61.2
OUR		52.1	68.3	62.6	81.1	43.0	63.5	54.1	75.3	81.8	96.0	67.1	83.5	60.1	78.0
OUR w/o t(·)		50.1	67.5	61.7	80.5	42.0	60.8	51.5	75.1	76.7	93.7	66.9	83.2	58.1	76.8
OUR w/o $s(\cdot)$		41.9	60.7	51.1	75.3	40.1	60.2	48.5	72.8	78.1	94.8	65.8	82.6	54.2	74.4
OUR w/o bilstm		50.3	66.9	61.9	80.9	42.2	63.0	51.8	74.1	77.2	95.4	66.4	82.9	58.3	77.2
OUR W EBD		39.7	57.5	56.5	76.3	40.6	58.6	48.6	71.5	81.7	95.8	61.5	80.9	54.8	73.4

Generalization and Overfitting

PCA visualization

