Prototypical Contrastive Learning of Unsupervised Representations

Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, Steven C.H. Hoi Salesforce Research
Preprint, Under review

Introduction

Instance-wise contrastive learning representation:

- Positive pair: pull closer
- Negative pair: push apart

Address the fundamental limitations of instance-wise contrastive learning

- Semantic structure of data is not encoded by learned representation
- Negative examples are pushed far away regardless their similarity

Solution: assign several prototypes of different granularity

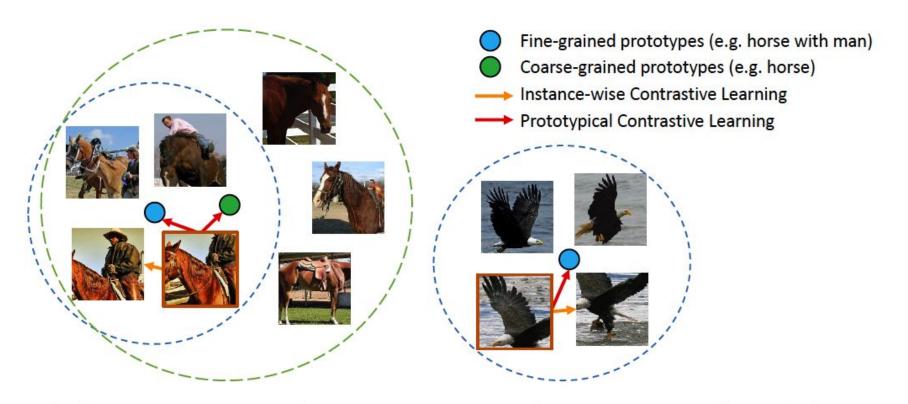


Figure 1: Illustration of Prototypical Contrastive Learning. Each instance is assigned to multiple prototypes with different granularity. PCL learns an embedding space which encodes the semantic structure of data.

Instance-wise Contrastive Learning

$$\mathcal{L}_{\text{InfoNCE}} = \sum_{i=1}^{n} -\log \frac{\exp(v_i \cdot v_i'/\tau)}{\sum_{j=0}^{r} \exp(v_i \cdot v_j'/\tau)},$$

Where v'_i is positive embedding, v'_j is negative embedding

T is temperature hyper-parameters

Prototype contrastive learning

Optimization

$$\theta^* = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^n -\log \frac{\exp(v_i \cdot c_s/\phi_s)}{\sum_{i=1}^k \exp(v_i \cdot c_j/\phi_j)},$$

Cluster concentration estimation

$$\phi = \frac{\sum_{z=1}^{Z} ||v_z' - c||_2}{Z \log(Z + \alpha)},$$

ProtoNCE

$$\mathcal{L}_{\text{ProtoNCE}} = \sum_{i=1}^{n} - \left(\log \frac{\exp(v_i \cdot v_i'/\tau)}{\sum_{j=0}^{r} \exp(v_i \cdot v_j'/\tau)} + \frac{1}{M} \sum_{m=1}^{M} \log \frac{\exp(v_i \cdot c_s^m/\phi_s^m)}{\sum_{j=0}^{r} \exp(v_i \cdot c_j^m/\phi_j^m)} \right)$$

```
Algorithm 1: Prototypical Contrastive Learning.
1 Input: encoder f_{\theta}, training dataset X, number of clusters K = \{k_m\}_{m=1}^{M}
\theta' = \theta
3 while not MaxEpoch do
      /* E-step */
    V'=f_{\theta'}(X)
                                                   // get momentum features for all training data
```

for
$$m = 1$$
 to M do
$$C^m = k - \text{mean}$$

each prototype with Equation 12

 $C^m = k - \text{means}(V', k_m)$ // cluster V' into k_m clusters, return prototypes $\phi_m = \operatorname{Concentration}(C^m, V')$ // estimate the distribution concentration around

// load a minibatch x

// calculate loss with Equation 11

// update encoder parameters // update momentum encoder

 $v = f_{\theta}(x), v' = f'_{\theta}(x)$ // forward pass through encoder and momentum encodeer $\mathcal{L}_{\text{ProtoNCE}}(v, v', \{C^m\}_{m=1}^M, \{\phi_m\}_{m=1}^M)$ $\theta = \text{SGD}(\mathcal{L}_{\text{ProtoNCE}}, \theta)$ $\theta' = 0.999 * \theta' + 0.001 * \theta$

/* M-step */ for x in Dataloader(X) do

// initialize momentum encoder as the encoder

end

end

10

11

14

15 end

Result: Low-shot image classification

Method	architecture	VOC07					Places205				
		k=1	k=2	k=4	k=8	k=16	k=1	k=2	k=4	k=8	k=16
Random	ResNet-50	8.0	8.2	8.2	8.2	8.5	0.7	0.7	0.7	0.7	0.7
Supervised		55.6	65.0	73.9	79.4	81.7	15.5	21.0	26.7	31.9	35.9
Jigsaw [24, 36]	ResNet-50	26.5	31.1	40.0	46.7	51.8	4.6	6.4	9.4	12.9	17.4
MoCo [3]		31.2	40.5	50.6	58.9	65.6	9.1	13.2	17.7	23.3	28.4
PCL (ours)		40.9	52.7	61.4	68.1	73.7	11.4	15.7	20.3	25.0	29.5
SimCLR [8]	ResNet-50-MLP	35.2	42.9	53.7	60.5	67.0	9.9	14.1	19.3	23.8	28.5
PCL (ours)		47.1	54.7	64.1	70.9	76.5	12.1	17.2	21.6	27.0	31.0

Table 1: **Low-shot image classification** on both VOC07 and Places205 datasets using linear SVMs trained on fixed representations. All methods were pretrained on ImageNet-1M dataset (except for Jigsaw [24, 36] trained on ImageNet-14M). We vary the number of labeled examples k and report the mAP (for VOC) and accuracy (for Places) across 5 runs. Results for Jigsaw were taken from [36]. We use the released pretrained model for MoCo, and re-implement SimCLR. MoCo, SimCLR, and PCL are trained for the same number of epochs (200 epochs).