Deeper Insights into Graph
Convolutional Networks for Semi-
Supervised Learning

Qimai Li, Zhichao Han, Xiao-Ming Wu

AAAI 2018

Overview

Graph-based Semi-Supervised Learning.
Spectral Graph Convolutions.

Graph Convolutional Networks (GCNSs).
Why GCNs work?

When GCNs fail?

Graph-based Semi-Supervised Learning

* Problem: classifying nodes in a graph, where labels are only available for a small subset
of nodes.

« Popular assumption: connected nodes in the graph are likely to share the same label.
 Training objective:

L= £O +)\ﬁreg
Where £reg — ZA’L]Hf(X’L) o f(X])H2
=> Limitation: ©J

+ Structure information is weakly encoded.

Graph Convolutional Networks (Kipf and Welling, 2017) directly operates on graphs,
motivated from a first-order approximation of spectral graph convolutions.

Spectral Graph Convolutions

« Some notations:

+ Undirectedgraph G = (V,&)where Visthe vertexsetand CEisthe edge set.
V| = N is the number of nodes.

+ Adjacency matrix A (no self-loops).

+ Degree matrix D where D;; = Zj Azj IS the degree of node i.

+ Graph Laplacian matrix L := D — A with two normalized versions:
- Symmetrix normalization: Lsym := D™ LD~z
- Random walk normalization: Lyw := D™'L

+ Self-loops added versions:
- Adjacency matrix. A=A+ 1

- Degree matrix:. D =) _; Ajj

Spectral Graph Convolutions

« Convolution theorem states that convolution of two matrices is equivalent to pointwise
multiplication in the fourier domain:

Flzxy) = F(z) © F(y)

Where () denotes fourier transform operator.

 In graph theory, the fourier transformation usually refers to the transformation to the
eigenvector dimension of the graph Laplacian Lsym .

» Spectral convolutions on a graph between a smnal z € RY inthe vertex (spatial) domain,
and a filter 90 = diag(6) parameterized by 9 € RV in the spectral (eigenvector space of Leyu)

domain is defined as: -
go*x =UgU

Where Lsym=UAU " where U is the matrix of eigenvectors of Lsym.

Graph Convolutional Networks

Hammond et al. (2011) shows that spectral convolutions can be well-approximated via
Chebyshev polynomials Ty () : K

gor * T ~ Z 0. Ti(L)x
k=0

Inwhich, L = s> L — Ix where \,,,.is the largest eigenvalue of L.

max SYII
Kipf and Welling (2017) simplified this by limitting K=1 and approximating). by
2, resulting in:

go*xx~ 0z +0, (L—Ix)z=0x—0,D ZAD 2z
They further simplified this by setting) = §, = — i , leading to:
go*xxT =~ 0 (IN — D_%AD_%) %
To avoid numerical instability, they replaced Iy +D-2AD~2 — D=2 AD" 3.

~ ~

Z7=D":AD"2X0

Graph Convolutional Networks

 Full model of Graph Convolutional Networks (2 layers):
7 — K, A= softmax(A ReLU (AXW“”) W<1>)
where A =D 2AD~
. Intepretationof A = D=2 AD~2;
+ A=A+ Iy Is the unnormalized adjacency matrix with self-loops.

t =

E(i,j)ev aikhi:j

+ A = D~!Ais the row normalized matrix. What we usually use: hé;.rl —

di,i
+ A = D—3 AD—3 normalized by both neighbor hood size of the current node and
that of its current neighbor. The propagationrule is: th o D _(ij)eV a’ikhfkj
t vV dprd;;

(less useful if getting information from a node that connects to so many nodes)

Why GCNs work?

« Laplacian smoothingis a theoritically strong method for mesh smoothing, which is the
process of changing vertex positions in a mesh in order to improve the mesh quality for finite
element analysis.

Source: Improved Laplacian Smoothing of Noisy Surface Meshes.

Why GCNs work?

« Laplacian smoothingis a theoritically strong method for mesh smoothing, which is the
process of changing vertex positions in a mesh in order to improve the mesh quality for finite
element analysis.

« Turns out GCNSs' propagationrule is a special case of a theoritically strong method called
Laplacian smoothing (Taubin 1995).

Y=X-~D'LX =(I—-~D'L)X

where [, =) — }i
+ Letting ~ 1 andreplacing D—17, with D—3 [,D—3, we have:

Y =D YV2AD-1/2X
Which is the propogation rule over a graph of GCNSs.

When GCNs fail?

« Stacking many layers of GCNs can lead to over-smoothing issue:

¥

(a) I-layer (b) 2-layer (c) 3-layer (d) 4-layer (e) S-layer

When GCNs fail?

« Stacking many layers of GCNs can lead to over-smoothing issue.
 Theorem:
- A graph G with k connected components {C; }¥_,
- Indication vector for the i-th component 1) ¢ RN
-If G has no bipartile component, then, for any w € RN and a € (0, 1], we have:
lim (I — aLy,)"w=[1013 10,

m——+o0

lim (I — aLgyy)"w=D"2[11 13 1M1,

m——+00
Where §; € R* 6, € R¥;and
+ {10}k are the eigenvectors corresponding to eigenvalue 1 of (I — atL,-)
+ {D~21™W}k_ are the eigenvectors corresponding to eigenvalue 1 of ([— &Ly,)

References

« Semi-Supervised Learning with Graph Convolutional Networks
(https://arxiv.org/pdf/1609.02907.pdf)

« Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning
(https://arxiv.org/pdf/1801.07606.pdf)

o https://personal.utdallas.edu/~hkokel/articles/GraphConvolutionalNetwork.html

* https://[towardsdatascience.com/spectral-graph-convolution-explained-and-implemented-
step-by-step-2e495b57f801

https://arxiv.org/pdf/1609.02907.pdf
https://arxiv.org/pdf/1801.07606.pdf
https://personal.utdallas.edu/~hkokel/articles/GraphConvolutionalNetwork.html
https://towardsdatascience.com/spectral-graph-convolution-explained-and-implemented-step-by-step-2e495b57f801

