Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning

Qimai Li, Zhichao Han, Xiao-Ming Wu

AAAI 2018
Overview

- Graph-based Semi-Supervised Learning.
- Spectral Graph Convolutions.
- Graph Convolutional Networks (GCNs).
- Why GCNs work?
- When GCNs fail?
Graph-based Semi-Supervised Learning

• Problem: classifying nodes in a graph, where labels are only available for a small subset of nodes.
• Popular assumption: connected nodes in the graph are likely to share the same label.
• Training objective:

\[\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{\text{reg}} \]

Where \[\mathcal{L}_{\text{reg}} = \sum_{i,j} A_{i,j} \| f(X_i) - f(X_j) \|^2 \]

=> Limitation:
+ Structure information is weakly encoded.

• Graph Convolutional Networks (Kipf and Welling, 2017) directly operates on graphs, motivated from a first-order approximation of spectral graph convolutions.
Spectral Graph Convolutions

• Some notations:
 + Undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where \mathcal{V} is the vertex set and \mathcal{E} is the edge set. $|\mathcal{V}| = N$ is the number of nodes.
 + Adjacency matrix A (no self-loops).
 + Degree matrix D where $D_{ii} = \sum_j A_{ij}$ is the degree of node i.
 + Graph Laplacian matrix $L := D - A$ with two normalized versions:
 - Symmetric normalization: $L_{\text{sym}} := D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$
 - Random walk normalization: $L_{\text{rw}} := D^{-1} L$
 + Self-loops added versions:
 - Adjacency matrix: $\tilde{A} = A + I$
 - Degree matrix: $\tilde{D} = \sum_j \tilde{A}_{ij}$
Spectral Graph Convolutions

• Convolution theorem states that convolution of two matrices is equivalent to pointwise multiplication in the fourier domain:

\[\mathcal{F}(x * y) = \mathcal{F}(x) \odot \mathcal{F}(y) \]

Where \(\mathcal{F}(\cdot) \) denotes fourier transform operator.

• In graph theory, the fourier transformation usually refers to the transformation to the eigenvector dimension of the graph Laplacian \(L_{\text{sym}} \).

• Spectral convolutions on a graph between a signal \(x \in \mathbb{R}^N \) in the vertex (spatial) domain, and a filter \(g_{\theta} = \text{diag}(\theta) \) parameterized by \(\theta \in \mathbb{R}^N \) in the spectral (eigenvector space of \(L_{\text{sym}} \)) domain is defined as:

\[g_{\theta} * x = U g_{\theta} U^\top x \]

Where \(L_{\text{sym}} = U \Lambda U^\top \) where \(U \) is the matrix of eigenvectors of \(L_{\text{sym}} \).
Graph Convolutional Networks

- Hammond et al. (2011) shows that spectral convolutions can be well-approximated via Chebyshev polynomials $T_k()$:
 \[g_{\theta'} \star x \approx \sum_{k=0}^{K} \theta'_{k} T_{k}(\tilde{L})x \]
 In which, $\tilde{L} = 2\frac{\lambda_{\max}}{L_{\text{sym}}} I_N$ where λ_{\max} is the largest eigenvalue of L_{sym}.

- Kipf and Welling (2017) simplified this by limiting $K=1$ and approximating λ_{\max} by 2, resulting in:
 \[g_{\theta'} \star x \approx \theta'_0 x + \theta'_1 (L - I_N) x = \theta'_0 x - \theta'_1 D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x \]
 They further simplified this by setting $\theta = \theta'_0 = -\theta'_1$, leading to:
 \[g_{\theta} \star x \approx \theta \left(I_N + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \right) x \]
 To avoid numerical instability, they replaced $I_N + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \rightarrow \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$.
 \[Z = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} X \Theta \]
Graph Convolutional Networks

- Full model of Graph Convolutional Networks (2 layers):
 \[Z = f(X, A) = \text{softmax}\left(\hat{A} \text{ReLU}\left(\hat{A}XW^{(0)} \right) W^{(1)} \right) \]
 where \(\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} \).

- Interpretation of \(\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} \):
 + \(\tilde{A} = A + I_N \) is the unnormalized adjacency matrix with self-loops.
 + \(\tilde{A}_{\text{row}} = \tilde{D}^{-1} \tilde{A} \) is the row normalized matrix. What we usually use:

\[
h_{ij}^{l+1} = \frac{\sum_{(i,j) \in \mathcal{V}} a_{ik} h_{kj}^l}{d_{i,i}^{\frac{1}{2}}}
\]

+ \(\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} \) normalized by both neighborhood size of the current node and that of its current neighbor. The propagation rule is:

\[
h_{ij}^{l+1} = \frac{\sum_{(i,j) \in \mathcal{V}} a_{ik} h_{kj}^l}{\sqrt{d_{k,k}d_{i,i}}}
\]

(less useful if getting information from a node that connects to so many nodes)
Why GCNs work?

- Laplacian smoothing is a theoretically strong method for mesh smoothing, which is the process of changing vertex positions in a mesh in order to improve the mesh quality for finite element analysis.

Source: Improved Laplacian Smoothing of Noisy Surface Meshes.
Why GCNs work?

- Laplacian smoothing is a theoretically strong method for mesh smoothing, which is the process of changing vertex positions in a mesh in order to improve the mesh quality for finite element analysis.

- Turns out GCNs' propagation rule is a special case of a theoretically strong method called Laplacian smoothing (Taubin 1995).

\[\hat{y}_i = (1 - \gamma)x_i + \gamma \sum_j \tilde{a}_{ij} \frac{d_i}{d_j} x_j ; \quad \hat{Y} = X - \gamma \tilde{D}^{-1} \tilde{L} X = (I - \gamma \tilde{D}^{-1} \tilde{L}) X \]

where \(\tilde{L} = \tilde{D} - \tilde{A} \).

- Letting \(\gamma = 1 \) and replacing \(\tilde{D}^{-1} \tilde{L} \) with \(\tilde{D}^{-1/2} \tilde{L} \tilde{D}^{-1/2} \), we have:

\[\hat{Y} = \tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2} X \]

Which is the propagation rule over a graph of GCNs.
When GCNs fail?

- Stacking many layers of GCNs can lead to over-smoothing issue:
When GCNs fail?

- Stacking many layers of GCNs can lead to over-smoothing issue.

- Theorem:
 - A graph G with k connected components $\{C_i\}_{i=1}^{k}$
 - Indication vector for the i-th component $1^{(i)} \in \mathbb{R}^N$
 - If G has no bipartile component, then, for any $w \in \mathbb{R}^N$ and $\alpha \in (0, 1]$, we have:
 \[
 \lim_{m \to +\infty} (I - \alpha L_{rw})^m w = [1^{(1)}, 1^{(2)}, \ldots, 1^{(k)}] \theta_1,
 \]
 \[
 \lim_{m \to +\infty} (I - \alpha L_{sym})^m w = D^{-\frac{1}{2}} [1^{(1)}, 1^{(2)}, \ldots, 1^{(k)}] \theta_2
 \]

Where $\theta_1 \in \mathbb{R}^k$, $\theta_2 \in \mathbb{R}^k$; and
+ $\{1^{(i)}\}_{i=1}^{k}$ are the eigenvectors corresponding to eigenvalue 1 of $(I - \alpha L_{rw})$
+ $\{D^{-\frac{1}{2}} 1^{(i)}\}_{i=1}^{k}$ are the eigenvectors corresponding to eigenvalue 1 of $(I - \alpha L_{sym})$
References

• Semi-Supervised Learning with Graph Convolutional Networks (https://arxiv.org/pdf/1609.02907.pdf)
• Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning (https://arxiv.org/pdf/1801.07606.pdf)
• https://personal.utdallas.edu/~hkokel/articles/GraphConvolutionalNetwork.html