Optimization-based Meta-Learning

1/13



Outline

@ Brief overview of optim-based meta-learning
» Meta-learning models aim to learn an global/initial params and a
update rule of how to quickly adapt to individual tasks (i.e., adjusting
global initial params to individual tasks)
» Meta-learning objective is to minimize the expected generalization loss
of the meta-learner on the task space
@ LSTM-based meta-learning (Meta-LSTM) (Ravi and Larochelle,
2016)
» Meta-LSTM uses a sequential LSTM update rule
@ Meta-SGD (Li et al., 2017)
» Meta-SGD learns the global learning rate and update direction «
addition to the initial params
o Meta-Curvature (Park and Oliva, 2020)
» Meta-Curvature further improves MAML by adding second-order
information into the gradient
* the additional info is is decomposed into 3 component matrices and is
multiplied to gradient during inner gradient update steps
@ IMOQ, the current trend is modifying and adding components to the
update rules to learn more about individual tasks, but the

components are controlled by some global learnable variables 2/13



Optim-based Meta-Learning: Intuition

@ Meta-learning objective is to minimize the expected generalization
loss of the meta-learner on the task space

mezn Er, [Lge(ee)] =E7 [LQe(ag - av@gLSe(9g))]

inner

outer

» inner-loop: given an individual task 7., the learner (params 6,) is
optimized based on the loss of task support set Lg,

» outer-loop: the loss of task query set Lo, is computed with the
updated learner and is accumulated to the generalization loss
Lgiobal = Y, Lo, the meta-learner (params 6,) is then optimized
based the generalization loss.
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Model-Agnostic

Meta-Learning (MAML): Model
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Algorithm : MAML’s training procedure

Require: train meta-set .7 ™"
Return: global params 6, that are adaptable to many tasks

1:

initialize 6,

2: for epoch in num epochs do

3: for episode ¢ in num episodes do
4: sample a local task 7. = (Se, Q.) from 7"
5: +— inner loop: learn local params for the local task
via the loss of task support set
6: set 0p = 0,
7 for step ¢ in num steps do
8: compute loss of the local task support set
L. = ¥ pyes, Low(/(@:00-1),)
9: compute gradient and update local params for the
local task
0, =61 —aVy,_,Ls,
10: end for
11: — outer loop: learn global params via all the losses
of all task query sets
12: compute loss of the local task query set with local
params
Lo. = E(,w,)ggp Las(f(:07),y)
13: accumulate the loss of the local task query set to the
global loss
Lgioba += Lo,
14: end for
15: compute global gradient (w.r.t. sum of all local losses)
and update global params
0y =04 — BV, Lgioba
16: end for
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Meta-Learning (MAML): Model
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Algorithm : MAML’s training procedure, inner-loop

Require: task support set S, global params 6,
Return: individual task params 6 after 7" update steps

1:

6:

+— inner loop: learn local params for the local task via the
loss of task support set

2: setfp =6,
3:
4

for step ¢ in num steps do
compute loss of the local task support set
Ls. = Yo yes, Los(F(@:6i-1),9)
compute gradient and update local params for the local
task
0 =011 — UV/),,J Ls(.
end for

Algorithm : MAML’s training procedure, outer-loop

Require: task query set Q., individual task params 67
Return: loss of task query set Lo,

1:

2:

— outer loop: learn global params via all the losses of all
task query sets

compute loss of the local task query set with local params
Lo, =Y (0 pea, Las(f(@:07),y)

: accumulate the loss of the local task query set to the global

loss
Lgova += Lo,
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Meta-LSTM vs MAML: Model

Algorithm : Meta-LSTM’s training procedure, inner-loop
Require: support set S.., global params 0,
Return: individual task params 07 after 7’ update steps

I~ inner loop: learn local params for the local task via
Algorithm : MAML's training procedurc, inner-1oop the loss of task support set sequentially with the LSTM

Require: task support set S.., global params 0, mechanism

P 2: setBo = 0,

Return: individual task params 07 after 7" update steps ’

T 3 inmer loop: learn Tocal params for lhpcdlocal ik via the 3: for step ¢ in num steps do )

Joss of task support set 4: compute loss of the local task support set

2 setlo = 0, Ls, = ¥(ayes. l«-h(/(fti 0i-1),y)

3: for step ¢ in num steps do 5: compute input gate i, and forget gate f;

4: compute loss of the local task support set iv=0(W'[Vo,_, Ls,,Ls.,0u-1,ir-1] + b')
Ls. =Y @, pes. Las(f(@:0:-1),y) fe=0(W" Vo, ,Ls,,Ls,,0u-1, fr-1] + b")

5:  compute gradient and update local params for the local 6:  update local params for the local task according to LSTM
task rule
0y = 0,1 —aVy, ,Ls, 0 = Or—1 — it ® Vg, , Ls,

6: end for 7: end for

o MAML's objective
winEr, [Lo.0)) =E7.[Lo. 0, 1-avy, ,Ls,)]
@ Meta-SGD uses a sequential LSTM update rule, its objective becomes

minEr. (Lo, 0.)] = ET.[Lo. (i 106, 1-is 1090, _, Ls,)]
g
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Meta-LSTM vs MAML: Model
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Meta-SGD vs MAML: Model

Algorithm : MAML’s training procedure, inner-loop
Require: task support set Se, global params 6,
Return: individual task params 6 after T" update steps
1: — inner loop: learn local params for the local task via the
loss of task support set

2: setfp =6,

3: for step ¢ in num steps do

4: compute loss of the local task support set
Ls. = Z(E_y)(sg Las(f(x;0:-1),y)

5: compute gradient and update local params for the local
task
0 =6,-1—aVe,_,Ls,

6: end for

o MAML's objective

Algorithm : Meta-SGD’s training procedure, inner-loop
Require: task support set S, global params 6, global Ir ay
Return: individual task params @ after T update steps

1:

W

5:

+— inner loop: learn local params for the local task via the
loss of task support set using global params 4 and global Ir
ay

: setfp =6,
: for step ¢ in num steps do

compute loss of the local task support set

Ls. = Y (@yyes. Las(f(®;0:-1), 1)

compute gradient and update local params for the local
task

0y =0;1— Ve, , Ls,

: end for

Il’éin Er.[Lo.@.)] = E7, [LQE(thlfavé)t_lLSe)]
g

@ In addition to learning global initial params as in MAML, Meta-SGD
also learns the global learning rate (and update direction) alpha

r%in ETP [LQ@(@@)] = ETe [LQe (atfl_agvf)tfll’se)]
g
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Meta-Curvature vs MAML: Model

Algorithm : MAML’s training procedure, inner-loop

Algorithm : Meta-Curvature’s training procedure, inner-
loop

Require: task support set S, global params 6,
Return: individual task params @7 after T" update steps

1:

2:
: for step ¢ in num steps do
4:

w

+— inner loop: learn local params for the local task via the
loss of task support set
setfp =0,

compute loss of the local task support set

Ls. = X:(w.y)&sL Las(f(z;0:-1),y)

compute gradient and update local params for the local
task

0, =6,-1 —aVy,_,Ls,

: end for

o MAML's objective

Require: task support set S., global params 6, curvature
params My, M;, M,
Return: individual task params f after T update steps
1: + inner loop: learn local params for the local task via the
loss of task support set
set 0o = O
: for step ¢ in num steps do
compute loss of the local task support set
Ls, = Z(mn/)ES,» Las(f (250:-1),y)
5: compute gradient and update local params for the local
task
0; =01 —aMC(Vy,_, Ls,; My, M;, M,)
6: end for

bl

n;in Er.[Lo.@©.)] = ET. [LQE((?t—l*aVet_l Lse)]
g

@ Meta-Curvature further improves MAML by adding second-order
information into the gradient

minE7 Lo, (.,)] = ET.[Lo. (0 1 —aMC(Vy, , Ls,:M; M;,M,))]
g
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Meta-Curvature vs MAML: Model
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@ The second-order information is characterized/decomposed by into 3
component matrices, the info is multiplied to the gradient during
updates

MC(Vo,Ls,(9,); My, Mi, M,) = Vo, Ls,(9,) x3 My X2 M; x1 M,

» all component matrices are updated globally similar to global initial
params
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FSL Benchmark

Model

minilmageNet test accuracy
1-shot 5-shot

Matching networks 20

43.56 +0.84%  55.31 £0.73%
43.44+0.77%  60.60 + 0.71%
48.70 £1.84%  63.11 +0.92%
49.40 + 1.83% -
49.97+0.32%  65.99 +0.58%
50.13 + 1.86% -

54.24 £0.03%  70.86 = 0.04%
55.71+0.99%  68.88 +0.92%
56.20 + 0.86%  73.00 + 0.64%
56.30 +0.40%  73.90 +0.30%
57.10 £0.70%  70.04 = 0.63%
5849 £0.91%  71.28 +0.69%
58.50 £0.30%  76.70 + 0.30%
59.60 +0.41%  73.74+0.19%
61.76 + 0.08% 77.59 4+ 0.12%

Model

tieredImageNet test accuracy
1-shot 5-shot

\

Relation Net (evaluated 1n
Transductive Prop. Nets

51.67+1.81%  70.30 4+ 0.08%
53.31£0.89%  72.69 +0.74%
54.48 £0.93%  71.32+0.78%
57.41+£0.94%  71.55+0.74%

Meta-SGD (our fcaturc;)
LEO (ours)

62.95+0.03%  79.34 4+ 0.06%
66.33 + 0.05% 81.4440.09%

Table 1: Test accuracies on minilmageNet and fieredlmageNet. For each dataset, the first set of
results use convolutional networks, while the second use much deeper residual networks, predomi-

nantly in conjuction with pre-training.
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Thank you !
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