Optimization-based Meta-Learning

Outline

- Brief overview of optim-based meta-learning
 - Meta-learning models aim to learn an global/initial params and a update rule of how to quickly adapt to individual tasks (i.e., adjusting global initial params to individual tasks)
 - Meta-learning objective is to minimize the expected generalization loss of the meta-learner on the task space
- LSTM-based meta-learning (Meta-LSTM) (Ravi and Larochelle, 2016)
 - Meta-LSTM uses a sequential LSTM update rule
- Meta-SGD (Li et al., 2017)
 - \blacktriangleright Meta-SGD learns the global learning rate and update direction α addition to the initial params
- Meta-Curvature (Park and Oliva, 2020)
 - Meta-Curvature further improves MAML by adding second-order information into the gradient
 - the additional info is is decomposed into 3 component matrices and is multiplied to gradient during inner gradient update steps
- IMO, the current trend is modifying and adding components to the update rules to learn more about individual tasks, but the components are controlled by some global learnable variables

Optim-based Meta-Learning: Intuition

• Meta-learning objective is to minimize the expected generalization loss of the meta-learner on the task space

$$\min_{\boldsymbol{\theta}_g} \mathbb{E}_{\mathcal{T}_e}[L_{\mathcal{Q}_e(\boldsymbol{\theta}_e)}] = \mathbb{E}_{\mathcal{T}_e}[L_{\mathcal{Q}_e}(\underbrace{\boldsymbol{\theta}_g - \alpha \nabla_{\boldsymbol{\theta}_g} L_{\mathcal{S}_e(\boldsymbol{\theta}_g)}}_{\text{inner}})]}_{\text{outer}}$$

- inner-loop: given an individual task *T_e*, the learner (params *θ_e*) is optimized based on the loss of task support set *L_{S_e}*
- **outer-loop:** the loss of task query set L_{Q_e} is computed with the updated learner and is accumulated to the generalization loss $L_{global} = \sum_{e} L_{Q_e}$. the **meta-learner** (params θ_g) is then optimized based the generalization loss.

Model-Agnostic Meta-Learning (MAML): Model

Rec	uire: train meta-set $\mathcal{T}^{\text{train}}$
Ret	urn: global params θ_g that are adaptable to many tasks
1:	initialize θ_g
2:	for epoch in num epochs do
3:	for episode e in num episodes do
4:	sample a local task $\mathcal{T}_e = (\mathcal{S}_e, \mathcal{Q}_e)$ from $\mathscr{T}^{\text{train}}$
5:	\mapsto inner loop: learn local params for the local task
	via the loss of task support set
6:	set $\theta_0 = \theta_g$
7:	for step t in num steps do
8:	compute loss of the local task support set
	$L_{\mathcal{S}_e} = \sum_{(\boldsymbol{x}, y) \in \mathcal{S}_e} L_{cls}(f(\boldsymbol{x}; \theta_{t-1}), y)$
9:	compute gradient and update local params for the
	local task
	$\theta_t = \theta_{t-1} - \alpha \nabla_{\theta_{t-1}} L_{\mathcal{S}_e}$
10:	end for
11:	→ outer loop: learn global params via all the losses
	of all task query sets
12:	compute loss of the local task query set with local
	params
	$L_{\mathcal{Q}_e} = \sum_{(\boldsymbol{x}, y) \in \mathcal{Q}_e} L_{\mathrm{cls}}(f(\boldsymbol{x}; \theta_T), y)$
13:	accumulate the loss of the local task query set to the
	global loss
	$L_{\text{global}} += L_{\mathcal{Q}_e}$
14:	end for
15:	compute global gradient (w.r.t. sum of all local losses)
	and update global params
	$\theta_g = \theta_g - \beta \nabla_{\theta_g} L_{\text{global}}$

Algorithm : MAML's training procedure

16: end for

Model-Agnostic Meta-Learning (MAML): Model

Algorithm : MAML's training procedure, inner-loop

Require: task support set S_e , global params θ_g **Return:** individual task params θ_T after T update steps

- → inner loop: learn local params for the local task via the loss of task support set
- 2: set $\theta_0 = \theta_q$
- 3: for step t in num steps do
- 4: compute loss of the local task support set $L_{S_e} = \sum_{(x,y) \in S_e} L_{cls}(f(x; \theta_{t-1}), y)$
- 5: compute gradient and update local params for the local task

$$\theta_t = \theta_{t-1} - \alpha \nabla_{\theta_{t-1}} L_{\mathcal{S}_e}$$

6: end for

Algorithm : MAML's training procedure, outer-loop

Require: task query set Q_e , individual task params θ_T **Return:** loss of task query set L_{Q_e}

- 1: → outer loop: learn global params via all the losses of all task query sets
- 2: compute loss of the local task query set with local params $L_{Q_e} = \sum_{(x,y) \in Q_e} L_{cls}(f(x; \theta_T), y)$
- 3: accumulate the loss of the local task query set to the global loss

 $L_{global} += L_{Q_e}$

Meta-LSTM vs MAML: Model

Algorithm : Meta-LSTM's training procedure, inner-loop

Require: task support set S_e , global params θ_g

Return: individual task params θ_T after T update steps

- 1: → inner loop: learn local params for the local task via the loss of task support set sequentially with the LSTM mechanism
- 2: set $\theta_0 = \theta_q$
- 3: for step t in num steps do
- 4: compute loss of the local task support set $L_{S_e} = \sum_{(x,y) \in S_e} L_{cls}(f(x; \theta_{t-1}), y)$
- 5: compute input gate i_t and forget gate f_t $i_t = \sigma(\mathbf{W}^I \cdot [\nabla \theta_{t-1} L_{\mathcal{S}_c}, L_{\mathcal{S}_c}, \theta_{t-1}, i_{t-1}] + \mathbf{b}^I)$ $f_t = \sigma(\mathbf{W}^F \cdot [\nabla \theta_{t-1} L_{\mathcal{S}_c}, L_{\mathcal{S}_c}, \theta_{t-1}, f_{t-1}] + \mathbf{b}^F)$
- 6: update local params for the local task according to LSTM rule

$$\theta_t = f_t \odot \theta_{t-1} - i_t \odot \nabla_{\theta_{t-1}} L_{S_e}$$

7: end for

MAML's objective

$$\min_{\theta_g} \mathbb{E}_{\mathcal{T}_e}[L_{\mathcal{Q}_e(\theta_e)}] = \mathbb{E}_{\mathcal{T}_e}[L_{\mathcal{Q}_e(\theta_{t-1} - \alpha \nabla_{\theta_{t-1}} L_{\mathcal{S}_e})}]$$

Meta-SGD uses a sequential LSTM update rule, its objective becomes

$$\min_{\theta_g} \mathbb{E}_{\mathcal{T}_e}[L_{\mathcal{Q}_e(\theta_e)}] = \mathbb{E}_{\mathcal{T}_e}[L_{\mathcal{Q}_e(f_{t-1} \odot \theta_{t-1} - i_{t-1} \odot \nabla_{\theta_{t-1}} L_{\mathcal{S}_e})]$$

6/13

Meta-LSTM vs MAML: Model

MAML

Meta-LSTM

Meta-SGD vs MAML: Model

Algorithm : MAML's training procedure, inner-loop	Algorithm : Meta-SGD's training procedure, inner-loop
Agorithm - MrANC's training proceeding, inner-roop Require: task support set $S_{e,z}$ global params θ_g Return: individual task params θ_T after T update steps 1: \mapsto inner loop: learn local params for the local task via the loss of task support set 2: set $\theta_0 = \theta_g$ 3: for step t in num steps do 4: compute loss of the local task support set $L_{S_e} = \sum_{(x,y) \in S_e} L_{cls}(f(x; \theta_{t-1}), y)$ 5: compute gradient and update local params for the local task $\theta_t = \theta_{t-1} - \alpha \nabla_{\theta_{t-1}} L_{S_e}$ 6: end for	 Require: task support set S_e, global params θ_g, global Ir α_g Return: individual task params θ_T after T update steps 1: → inner loop: learn local params for the local task via the loss of task support set using global params θ_g and global Ir α_g 3: set θ₀ = θ_g 3: for step t in num steps do 4: compute loss of the local task support set L_{Se} = Σ_{(x,y)∈Se} L_{ch}(f(x; θ_{t-1}), y) 5: compute gradient and update local params for the local task θ_t = θ_{t-1} - α_g∇θ_{t-1}L_{Se} 6: end for

MAML's objective

$$\min_{\theta_g} \mathbb{E}_{\mathcal{T}_e}[L_{\mathcal{Q}_e(\theta_e)}] = \mathbb{E}_{\mathcal{T}_e}[L_{\mathcal{Q}_e(\theta_{t-1} - \alpha \nabla_{\theta_{t-1}} L_{\mathcal{S}_e})}]$$

• In addition to learning global initial params as in MAML, Meta-SGD also learns the global learning rate (and update direction) alpha

$$\min_{\theta_g} \mathbb{E}_{\mathcal{T}_e}[L_{\mathcal{Q}_e(\theta_e)}] = \mathbb{E}_{\mathcal{T}_e}[L_{\mathcal{Q}_e(\theta_{t-1} - \alpha_g \nabla_{\theta_{t-1}} L_{\mathcal{S}_e})}]$$

8/13

Meta-Curvature vs MAML: Model

	Algorithm : Meta-Curvature's training procedure, inner-	
Algorithm : MAML's training procedure, inner-loop	loop	
Require: task support set S_c , global params θ_g Return: individual task params θ_T after T update steps 1: \mapsto inner loop: learn local params for the local task via the	Require: task support set S_e , global params θ_g , curvature params M_f, M_i, M_o Return: individual task params θ_T after T update steps	
loss of task support set 2: set $\theta_0 = \theta_g$	1: → inner loop: learn local params for the local task via the loss of task support set	
 3: for step t in num steps do 4: compute loss of the local task support set L_{Se} = ∑_{(x,y)∈Se} L_{ch}(f(x; θ_{t-1}), y) 5: compute gradient and update local params for the local task θ_t = θ_{t-1} - α∇_{θ_{t-1}}L_{Se} 6: end for 	 set θ₀ = θ_j for step t in num steps do compute loss of the local task support set L_{s_e} = Σ_{(e,y)∈s_j} L_{eb}(f(x; θ_{t-1}), y) compute gradient and update local params for the local task θ_t = θ_{t-1} - α MC(∇_{θ_{t-1}L_{s_e}; M_f, M_i, M_o)} end for 	

MAML's objective

$$\min_{\theta_g} \mathbb{E}_{\mathcal{T}_e}[L_{\mathcal{Q}_e(\theta_e)}] = \mathbb{E}_{\mathcal{T}_e}[L_{\mathcal{Q}_e(\theta_{t-1} - \alpha \nabla_{\theta_{t-1}} L_{\mathcal{S}_e})}]$$

Meta-Curvature further improves MAML by adding second-order information into the gradient

$$\min_{\theta_g} \mathbb{E}_{\mathcal{T}_e}[L_{\mathcal{Q}_e(\theta_e)}] = \mathbb{E}_{\mathcal{T}_e}[L_{\mathcal{Q}_e(\theta_{t-1}-\alpha \operatorname{MC}(\nabla_{\theta_{t-1}}L_{\mathcal{S}_e}; M_f, M_i, M_o))}]$$

Meta-Curvature vs MAML: Model

 The second-order information is characterized/decomposed by into 3 component matrices, the info is multiplied to the gradient during updates

$$\operatorname{MC}(
abla_{ heta_g} L_{\mathcal{S}_e(heta_g)}; \boldsymbol{M}_f, \boldsymbol{M}_i, \boldsymbol{M}_o) =
abla_{ heta_g} L_{\mathcal{S}_e(heta_g)} imes_3 \boldsymbol{M}_f imes_2 \boldsymbol{M}_i imes_1 \boldsymbol{M}_o$$

 all component matrices are updated globally similar to global initial params

FSL Benchmark

Model	miniImageNet test accuracy	
Matching networks (Vinyals et al. 2016) Meta-learner LSTM (Ravr & Larochelle, 2017) MAML (Finn et al. 2017) LLAMA (Grant et al. 2018)	$\begin{array}{c} -3.56 \pm 0.84\% \\ 43.56 \pm 0.77\% \\ 48.70 \pm 1.84\% \\ 49.40 \pm 1.83\% \end{array}$	$55.31 \pm 0.73\% \\ 60.60 \pm 0.71\% \\ 63.11 \pm 0.92\%$
REPTILE (Nichol & Schulman, 2018) PLATIPUS (Finn et al., 2018)	$49.97 \pm 0.32\%$ $50.13 \pm 1.86\%$	$65.99 \pm 0.58\%$
Meta-SGD (our features) SNAIL (Mishra et al. 2018) (Gidaris & Komodakis 2018) (Munkhdalar et al. 2017) DEML-Meta-SGD Zhou et al. 2018) TADAM (Oreshkin et al. 2018) (Qiao et al. 2017) LEU (ours)	$\begin{array}{c} 54.24\pm0.03\%\\ 55.71\pm0.99\%\\ 56.20\pm0.86\%\\ 56.30\pm0.40\%\\ 57.10\pm0.70\%\\ 58.49\pm0.91\%\\ 58.50\pm0.30\%\\ 59.60\pm0.41\%\\ 61.76\pm0.08\%\end{array}$	$\begin{array}{c} 70.86\pm0.04\%\\ 68.88\pm0.92\%\\ 73.00\pm0.64\%\\ 73.90\pm0.30\%\\ 70.04\pm0.63\%\\ 71.28\pm0.69\%\\ 76.70\pm0.30\%\\ 73.74\pm0.19\%\\ 77.59\pm0.12\%\end{array}$
Model	<i>tiered</i> ImageNet test accuracy 1-shot 5-shot	
MAML (deeper net, evaluated in Liu et al. (2018) Prototypical Nets (Ren et al. 2018) Relation Net (evaluated in Liu et al. (2018) Transductive Prop. Nets (Liu et al. (2018)	$\begin{array}{c} 51.67 \pm 1.81\% \\ 53.31 \pm 0.89\% \\ 54.48 \pm 0.93\% \\ 57.41 \pm 0.94\% \end{array}$	$\begin{array}{c} 70.30\pm0.08\%\\ 72.69\pm0.74\%\\ 71.32\pm0.78\%\\ 71.55\pm0.74\%\end{array}$
Meta-SGD (our features) LEO (ours)	$\begin{array}{c} 62.95 \pm 0.03\% \\ \textbf{66.33} \pm \textbf{0.05}\% \end{array}$	$\begin{array}{c} 79.34 \pm 0.06\% \\ 81.44 \pm 0.09\% \end{array}$

Table 1: Test accuracies on *mini*ImageNet and *tiered*ImageNet. For each dataset, the first set of results use convolutional networks, while the second use much deeper residual networks, predominantly in conjuction with pre-training.

Thank you !

- Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-SGD: Learning to Learn Quickly for Few-Shot Learning. *arXiv:1707.09835 [cs]*, 2017.
- Eunbyung Park and Junier B. Oliva. Meta-Curvature. In *Proceedings of the NeurIPS 2019*, 2020.
- Sachin Ravi and Hugo Larochelle. Optimization as a Model for Few-Shot Learning. In *Proceedings of the ICLR 2016*, 2016.