Simple and Deep Graph Convolutional Networks

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, Yaliang Li

ICML2020

Problem

- Graph Convolutional Networks are stuck in a shallow archtecture due to the over-smoothing issue.
- This paper proposes some modifications to the convolution of the GCNs, enabling a deep architecture.

Variants of GCNs

Vanilla GCN:

$$\mathbf{H}^{(\ell+1)} = \sigma \left(\tilde{\mathbf{P}} \mathbf{H}^{(\ell)} \mathbf{W}^{(\ell)} \right)$$

• APPNP:

$$\boldsymbol{H}^{(\ell+1)} = (1 - \alpha)\tilde{\boldsymbol{P}}\boldsymbol{H}^{(\ell)} + \alpha\boldsymbol{H}^{(0)}$$

• JKNet:

$$\mathsf{Aggregate}(\left[\mathbf{H}^{(1)},\ldots,\mathbf{H}^{(K)}\right]\!)$$

DropEdge:

$$\mathbf{H}^{(\ell+1)} = \sigma \left(\tilde{\mathbf{P}}_{\text{drop}} \mathbf{H}^{(\ell)} \mathbf{W}^{(\ell)} \right)$$

Deep GCNs

Initial residual connection:

$$(1-\alpha_{\ell})\tilde{\mathbf{P}}\mathbf{H}^{(\ell)} + \alpha_{\ell}\mathbf{H}^{(0)}$$

Identity mapping:

$$(1-\beta_{\ell})\mathbf{I}_n + \beta_{\ell}\mathbf{W}^{(\ell)}$$

Proprogation rule of the deep GCNs:

$$\mathbf{H}^{(\ell+1)} = \sigma \left(\left((1 - \alpha_{\ell}) \tilde{\mathbf{P}} \mathbf{H}^{(\ell)} + \alpha_{\ell} \mathbf{H}^{(0)} \right) \left((1 - \beta_{\ell}) \mathbf{I}_n + \beta_{\ell} \mathbf{W}^{(\ell)} \right) \right)$$

- α_{ℓ} is recommended to set to 0.1 or 0.2
- $\beta_\ell = \log(\frac{\lambda}{\ell} + 1) \approx \frac{\lambda}{\ell}$ where λ is a hyper-parameter (they set to 0.5)

Deep GCNs

- Vanilla GCNs simulate a polynomial filter $\left(\sum_{\ell=0}^K \theta_\ell \tilde{\mathbf{L}}^\ell\right) \mathbf{x}$ of order K with fixed coefficients θ .
- On the other hand, Deep GCNs with K layers are proved to be able to express a K order polynomial filter with arbitrary coefficients.
- The autthors attribute this difference to the success of the Deep GCNs.

Results

Table 2. Summary of classification accuracy (%) results on Cora, Citeseer, and Pubmed. The number in parentheses corresponds to the number of layers of the model.

Method	Cora	Citeseer	Pubmed	
GCN	81.5	71.1	79.0	
GAT	83.1	70.8	78.5	
APPNP	83.3	71.8	80.1	
JKNet	81.1 (4)	69.8 (16)	78.1 (32)	
JKNet(Drop)	83.3 (4)	72.6 (16)	79.2 (32)	
Incep(Drop)	83.5 (64)	72.7 (4)	79.5 (4)	
GCNII GCNII*		$73.4 \pm 0.6 (32)$ $73.2 \pm 0.8 (32)$		

Table 3. Summary of classification accuracy (%) results with various depths.

Results

Dataset	Method	Layers						
		2	4	8	16	32	64	
Cora	GCN	81.1	80.4	69.5	64.9	60.3	28.7	
	GCN(Drop)	82.8	82.0	75.8	75.7	62.5	49.5	
	JKNet	-	80.2	80.7	80.2	81.1	71.5	
	JKNet(Drop)	-	83.3	82.6	83.0	82.5	83.2	
	Incep	-	77.6	76.5	81.7	81.7	80.0	
	Incep(Drop)	-	82.9	82.5	83.1	83.1	83.5	
	GCNII	82.2	82.6	84.2	84.6	85.4	85.5	
	GCNII*	80.2	82.3	82.8	83.5	84.9	85.3	
Citeseer	GCN	70.8	67.6	30.2	18.3	25.0	20.0	
	GCN(Drop)	72.3	70.6	61.4	57.2	41.6	34.4	
	JKNet	-	68.7	67.7	69.8	68.2	63.4	
	JKNet(Drop)	-	72.6	71.8	72.6	70.8	72.2	
	Incep	-	69.3	68.4	70.2	68.0	67.5	
	Incep(Drop)	-	72.7	71.4	72.5	72.6	71.0	
	GCNII	68.2	68.9	70.6	72.9	73.4	73.4	
	GCNII*	66.1	67.9	70.6	72.0	73.2	73.1	
Pubmed	GCN	79.0	76.5	61.2	40.9	22.4	35.3	
	GCN(Drop)	79.6	79.4	78.1	78.5	77.0	61.5	
	JKNet	-	78.0	78.1	72.6	72.4	74.5	
	JKNet(Drop)	-	78.7	78.7	79.1	79.2	78.9	
	Incep	-	77.7	77.9	74.9	OOM	OOM	
	Incep(Drop)	-	79.5	78.6	79.0	OOM	OOM	
	GCNII	78.2	78.8	79.3	80.2	79.8	79.7	
	GCNII*	77.7	78.2	78.8	80.3	79.8	80.1	