Dynamic Memory Induction Networks for Few-Shot Text Classification

Ruiying Geng, Binhua Li, Yongbin Li, Jian Sun, Xiaodan Zhu

Motivation

Observation: good prototypes yield better performance

Literature:

Average prototype (Prototypical Network)

Query-based weighted sum (Hybrid Attention Prototypical network)

Induction network (Dynamic Routing)

This paper try to advance the prototypes using dynamic memory with knowledge from supervised task

Overview

Three-stage matching network

1. Dynamic Memory Instance Encoder

$$q' = DMR(M,q)$$
 a memory matrix M (here W_{base}) sample vector $q \in R^d$.

2. Dynamic Memory Query-based Prototype

$$e_c = DMR(\{e'_{c,s}\}_{s=1,...,K}, e_q).$$

3. Classifier

$$s_{q,c} = \tau \cdot cos(e_q, e_c) = \tau \cdot \overline{e}_q^T \overline{e}_c.$$

Dynamic Memory Routing

$$q' = DMR(M,q)$$
 a memory matrix M (here W_{base}) sample vector $q \in R^d$.

1. Linear transformation and squash

$$\hat{m}_{ij} = squash(W_j m_i + b_j),$$

 $\hat{q}_j = squash(W_j q + b_j),$

2. Pearson Correlation Coefficient

$$p_{ij} = tanh(PCCs(\hat{m}_{ij}, \hat{q}_j)),$$

$$PCCs = \frac{Cov(x_1, x_2)}{\sigma_{x_1}\sigma_{x_2}}.$$

3. Routing iteration

$$d_{i} = softmax(\alpha_{i}),$$

$$\alpha_{ij} = \alpha_{ij} + p_{ij}\hat{m}_{i}v_{j}.$$

4. Vector representation

$$\hat{v}_j = \sum_{i=1}^n (d_{ij} + p_{ij}) m_{ij},$$
 $v_j = squash(\hat{v}_j).$

Algorithm

Algorithm 1 Dynamic Memory Routing Process **Require:** r, q and memory

$$\{m_1, m_2, ..., m_n\}$$

Ensure: $m{v} = v_1, v_2, ..., v_l, q'$

- 1: for all m_i, v_i do
- 2: $\hat{m}_{ij} = squash(W_i m_i + b_i)$
- 3: $\hat{q}_i = sqush(W_iq + b_i)$
- 4: $\alpha_{ij} = 0$
- 5: $p_{ij} = tanh(PCCs(\hat{m}_{ij}, \hat{q}_i))$ 6: end for
- 7: for r iterations do
- 8: $d_i = softmax(\alpha_i)$
- 9: $\hat{v}_i = \sum_{i=1}^n (d_{ij} + p_{ij}) \hat{m}_{ij}$
- 10: $v_i = squash(\hat{v}_i)$
- 11: for all i, j: $\alpha_{ij} = \alpha_{i,j} + p_{ij} \hat{m}_{ij} v_j$
- 12: for all j: $\hat{q}_i = \frac{\hat{q}_j + v_j}{2}$
 - for all $i, j: p_{ij} = tanh(PCCs(\hat{m}_{ij}, \hat{q}_i))$
- **14: end for**
- 15: $q' = concat[\mathbf{v}]$
- 16: **Return** q'

13:

Result

BERT

ATAMI.

Rel. Net

Ind. Net

HATT

LwoF

DMIN

Model

•		

5-way Acc.

1-shot

 30.79 ± 0.68

 54.05 ± 0.14

 59.19 ± 0.12

 60.97 ± 0.16

 60.40 ± 0.17

 63.35 ± 0.26

 65.72 ± 0.28

5-shot

 63.31 ± 0.73

 78.83 ± 0.38

 82.39 ± 0.24

 49.54 ± 0.31

5-shot

 69.42 ± 0.34

 68.58 ± 0.37

 69.57 ± 0.35

 72.52 ± 0.25

10-way Acc.

Ablation study

Model	Iteration	1 Shot	5 Shot
w/o DMM	3	81.79	90.19
w/o QIM	3	82.37	90.57
DMIN	1	82.70	90.92
DMIN	2	82.95	91.18
DMIN	3	83.46	91.75