#### Feature Projection for Improved Text Classification

Qi Qin, Wenpeng Hu, Bing Liu ACL2020

# Overview

- Many neural networks and embedding techniques have been designed to produce good representations for text classification (RNN, CNN, Transformer, BERT).
- Indiscriminative features encoded in representations could lead to sub-optimal classification performance.
- The goal of this work is to **project** existing representations produced by an encoder to a space where indiscriminative features are **eliminated**.

## Feature Projection: Main Idea

- Given a data input, suppose that we can extract from it **indiscriminative** features which are encoded in the vector  $f_c$ . (1)
- Using a regular encoder (e.g., RNN, CNN), we can extract features from the data input to store in  $f_p$ .
- We can factorize  $f_p = f_p * + \widetilde{f_p}$  where  $\widetilde{f_p} \perp f_c$  and  $f_p * \parallel f_c$  (2)

=> using  $f_p$  with all indiscriminative features **eliminated** can be **better** for classification.

- To achieve (1), they utilizes (in a new way) the Gradient Reverse Layer (GRL).
- To achieve (2), they propose the Orthogonal Projection Layer (OPL).



#### Feature Projection: Overall Architecture



# Feature Projection: C-Net

- Inherit the idea from domain adaptaion field in using the Gradient Reverse Layer.
- Given an input sentence X, the feature vector extracted by CNN is:  $f_c = \text{CNN}_{\mathbf{C}}(X)$
- In forward pass, GRL serves as an identity function:  $GRL(f_c) = f_c$
- Then,  $f_c$  is used to predict the **task label** of the sentence:  $Y_{GRL} = \operatorname{softmax}(f_c \cdot W_c + b_c)$
- The regular cross-entropy loss is used here:  $Loss_c = CrossEntropy(Y_{truth}, Y_{GRL})$
- However, in backward pass, GRL interestingly **reverse** the **direction** of the gradient:

GRL(x) = x,

$$\frac{\partial GRL(x)}{\partial x} = -\lambda I,$$

=> This makes the updates for the feature extractor of C-Net are made toward **maximizing** the loss **instead** of minimizing it.

=> This is why  $f_c$  becomes more and more **helpless (i.e., indiscriminative)** for classifying the sentence.

## Feature Projection: C-Net

• In **domain adaptation**, the feature extractor is **shared** between the domain classifier and the task classifier.



## Feature Projection: P-Net



- In P-Net, we also get a feature vector:  $f_p = \operatorname{CNN}_p(X)$
- With the indiscriminative feature vector  $f_c$  from C-Net, P-Net does some projections for  $f_p$  as follows:

+ First,  $f_p$  is **projected** on to  $f_c$  to obtain  $f_p * : f_p * = \operatorname{Proj}(f_p, f_c)$ 

+ Second, the **purified** feature vector  $\widetilde{f_p}$  is computed by:  $\widetilde{f_p} = f_p - f_{p*}$ 

- The purified vector  $\widetilde{f_p}$  is then used for classification:  $Y_{OPL} = \operatorname{softmax}(\widetilde{f_p} \cdot W_p + b_p)$
- To train the P-Net, the cross-entropy loss is used:  $Loss_p = \text{CrossEntropy}(Y_{truth}, Y_{OPL})$
- Not only  $\operatorname{can} \widetilde{f_p}$  benefit from  $f_c$  to be **more discriminative**, but also  $f_c$  can benefit from the discriminative signals of  $\widetilde{f_p}$  to make  $f_c$  more indiscriminative (because  $\widetilde{f_p} \perp f_c$ ).
- P-Net and C-Net are trained alternatively, not jointly as in domain adaptation (in domain adaptation, we actually add two losses together).

#### Results

#### • Datasets:

| Data | c | l  | Train  | Test  | V      |
|------|---|----|--------|-------|--------|
| MR   | 2 | 45 | 8,529  | 1,066 | 17,884 |
| SNLI | 3 | 40 | 54,936 | 9,824 | 33,944 |
| SST2 | 2 | 35 | 6,920  | 1,821 | 16,789 |
| TREC | 6 | 15 | 5,000  | 952   | 8,834  |

Table 1: Dataset statistics. c: number of classes. l: average length of sentences, after padding and cutting. Train, Test: number of training and testing examples. |V|: vocabulary size.

## Results

| Model    | MR                | SNLI              | SST2              | TREC               |
|----------|-------------------|-------------------|-------------------|--------------------|
| LSTM     | $77.46(\pm 0.41)$ | $76.98(\pm 0.07)$ | $80.41(\pm 0.20)$ | $87.19(\pm 0.58)$  |
| FP+LSTM  | $78.13(\pm 0.18)$ | $77.92(\pm 0.10)$ | $81.60(\pm 0.17)$ | $88.83(\pm 0.40)$  |
| CNN      | $76.18(\pm 0.45)$ | $72.92(\pm 0.19)$ | $80.47(\pm 0.59)$ | $90.86(\pm 0.51)$  |
| FP+CNN   | $78.74(\pm 0.36)$ | $74.38(\pm 0.14)$ | $82.02(\pm 0.11)$ | $92.78(\pm 0.26)$  |
| Trans    | $75.18(\pm 0.57)$ | $66.71(\pm 0.58)$ | $76.93(\pm 0.39)$ | $87.33(\pm 0.23)$  |
| FP+Trans | $76.83(\pm 0.66)$ | $73.34(\pm 0.43)$ | $78.42(\pm 0.49)$ | $89.51 (\pm 0.79)$ |
| Bert     | $87.45(\pm 0.51)$ | $80.78(\pm 0.42)$ | $90.38(\pm 0.10)$ | $96.67(\pm 0.22)$  |
| FP+Bert  | $90.56(\pm 0.35)$ | $81.47(\pm 0.26)$ | $92.24(\pm 0.29)$ | $98.33(\pm 0.24)$  |

Table 2: Results of our FP-Net against baseline methods. In each block, FP+X is a model obtained by our FP-Net using X as the feature extractor. Accuracy (%) is the evaluation metric. Each result in the table is the average accuracy of five experiments with the standard deviation in parentheses.