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Overview

 Many neural networks and embedding technigues have been
designed to produce good representations for text classification
(RNN, CNN, Transformer, BERT).

* Indiscriminative features encoded in representations could
lead to sub-optimal classification performance.

* The goal of this work Is to project existing representations
produced by an encoder to a space where indiscriminative
features are eliminated.



Feature Projection: Main Idea

« Given a data input, suppose that we can extract from it indiscriminative features which
are encoded in the vector f. . (1)

« Using a regular encoder (e.g., RNN, CNN), we can extract features from the data input to
storein f) .

- We canfactorize f, = f,* + E where }; 1 f.and foxll fo (2

=> using fp with all indiscriminative features eliminated can be better for classification.
* To achieve (1), they utilizes (in a new way) the Gradient Reverse Layer (GRL).

« To achieve (2), they propose the Orthogonal Projection Layer (OPL).




Feature Projection: Overall Architecture
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Feature Projection: C-Net

Inherit the idea from domain adaptaion field in using the Gradient Reverse Layer.

Given an input sentence X, the feature vector extracted by CNN is: fe = CNN¢ (X)

In forward pass, GRL serves as an identity function: GRL(f.) = f.

Then, f. is used to predict the task label of the sentence: Yorr, = softmax(f. - W, + b.)
The regular cross-entropy loss is used here: Loss. = CrossEntropy (Y uih, YGRL)

However, in backward pass, GRL interestingly reverse the direction of the gradient:
GRL(x) = x,

OGRL(x)
0x
=> This makes the updates for the feature extractor of C-Net are made toward maximizing the
loss instead of minimizing it.

=> This is why f. becomes more and more helpless (i.e.,indiscriminative) for classifying the
sentence.
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Feature Projection: C-Net

* Indomain adaptation, the feature extractor is shared between the domain classifier and the
task classifier.
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Feature Projection: P-Net

In P-Net, we also get a feature vector: f, = CNNp(X)

With the indiscriminative feature vector f. from C-Net, P-Net does some projections for Ip as
follows:

+ First, fp is projectedonto f.toobtain fp* : fpx = Proj(fp, fe)
+ Second, the purified feature vectol f,, is computed by:}; = fp — fp*

The purified vector }; is then used for classification: Yy p; = softmax(f, - W, + b,)

To train the P-Net, the cross-entropy loss is used:  Loss),, = CrossEntropy(Y},uth, YoprL)
* Not only can fp benefit from f. to be morediscriminative, but also fc can benefit from the

discriminative signals of }; tomake f.moreindiscriminative (because f, L f¢).

 P-Net and C-Net are trained alternatively, not jointly as in domain adaptation (in domain
adaptation, we actually add two losses together).



Results

e Datasets:

Data c| U | Train | Test V]

MR 2145 | 8,529 | 1,066 | 17,884
SNLI || 3 | 40 | 54,936 | 9,824 | 33,944
SST2 || 2|35 6920 | 1,821 | 16,789
TREC || 6 | 15| 5,000 | 952 8,834

Table 1: Dataset statistics. c: number of classes. [:
average length of sentences, after padding and cutting.
T'rain, Test: number of training and testing examples.
|V|: vocabulary size.



Results

Model MR SNLI SST2 TREC
LSTM 77.46(£0.41) | 76.98(£0.07) | 80.41(£0.20) | 87.19(%0.58)
FP+LSTM | 78.13(%0.18) | 77.92(£0.10) | 81.60(%0.17) | 88.83(%0.40)
CNN 76.18(£0.45) | 72.92(£0.19) | 80.47(£0.59) | 90.86(%0.51)
FP+CNN | 78.74(£0.36) | 74.38(£0.14) | 82.02(%+0.11) | 92.78(=£0.26)
Trans 75.18(£0.57) | 66.71(£0.58) | 76.93(£0.39) | 87.33(£0.23)
FP+Trans | 76.83(+0.66) | 73.34(+0.43) | 78.42(+0.49) | 89.51(+0.79)
Bert 87.45(£0.51) | 80.78(£0.42) | 90.38(%0.10) | 96.67(£0.22)
FP+Bert | 90.56(%0.35) | 81.47(£0.26) | 92.24(+0.29) | 98.33(+0.24)

Table 2: Results of our FP-Net against baseline methods. In each block, FP+X is a model obtained by our FP-Net
using X as the feature extractor. Accuracy (%) is the evaluation metric. Each result in the table is the average
accuracy of five experiments with the standard deviation in parentheses.



