Semi-supervised Learning Models, Group of Methods "MixUp"

Outline

- MixUp (Zhang et al., ICLR 2018)
 - data augmentation method: train models on convex combination two inputs and two labels
- MixUp strategies for semi-supervised learning
 - ICT (Verma et al., IJCAI 2019)
 - MixMatch (Berthelot et al., NeurIPS 2019)
- MixUp strategies in NLP (Guo et al., 2019, Thulasidasan et al., NeurIPS 2019)
 - Word embeddings
 - Final vector representation

MixUp: Intuition

- ML models rely and are overconfident on existing examples
- We need to fill in the gap between the points
- The paper bases on vicinal risk minimization (VRM) theory instead of empirical risk minimization (ERM)
 - train on augmented examples neighboring original examples

MixUp: Data augmentation

• Convex combination of two examples

$$\lambda \sim \text{Beta}(\alpha, \alpha)$$
$$(x_i, y_i), (x_j, y_j) \sim \mathcal{D}_l$$
$$x_i' = \lambda x_i + (1 - \lambda) x_j$$
$$y_i' = \lambda y_i + (1 - \lambda) y_j$$

• Vicinal objective function

$$\mathcal{L}(\theta) = \ell(p(y|x_i';\theta), y_i')$$

MixUp: Benefits

- Agnostic data augmentation: work on image, speech, text (with modification), tabular data, stablizing GANs
- Generalize better to out-of-distribution examples
- Robustness to adversarial examples
- Smooth decision boundaries, reduce memorization and overfitting

MixUp strategies for semi-supervised learning: ICT (Verma et al., IJCAI 2019)

• Mixing unlabeled examples

MixUp strategies for semi-supervised learning: MixMatch (Berthelot et al., NeurIPS 2019)

- Mixing both labeled and unlabeled examples as follows
 - Label predictions for unlabeled examples, averaging output distribution for K augmented unlabeled examples

$$y_{\rm ul} = \frac{1}{K} \sum_{k=1}^{K} p(y|\hat{u}_{\rm ul}; \theta)$$

▶ Sharpening (temperature anealing) label predictions, forcing output distribution towards one-hot vector by adjusting temperature $T \rightarrow 0$

$$y_{\mathrm{ul},c} = \frac{y_{\mathrm{ul},c}^{\frac{1}{T}}}{\sum_{c=1}^{C} y_{\mathrm{ul},c}^{\frac{1}{T}}}$$

- MixUp all labeled and unlabeled examples
- Warning: during training, we pass K duplicated unlabeled images at the same time, so we need to adjust batchnorm updates to only take one set unlabeled images

NLP MixUp Strategies

- Word embeddings
 - Mixing embeddings of aligned words between two sentences (padding sentences if one is shorter than the other)
- Final vector representation

NLP MixUp Results

RandomTune	Trec		SST-1		SST-2		Subj	MR
CNN- KIM Impl. (Kim, 2014b)	91.2		45.0		82.7		89.6	76.1
CNN- HarvardNLP Impl. ¹	88.2		42.2		83.5		89.2	75.9
CNN - Our Impl.	90.2±0.20		43.6±0.19		82.3±0.47		$90.6{\pm}0.45$	$75.5{\pm}0.36$
CNN+wordMixup	90.9±0.42		45.2	2 ± 0.90	82	.8±0.45	92.9±0.41	78.0±0.39
CNN+senMixup	92.1±0.31		$45.2{\pm}0.22$		83.0±0.35		$92.7{\pm}0.38$	$77.9{\pm}0.76$
RandomTune		Trec		SST-1		SST-2	Subj	MR
LSTM-StanfordNLP Impl. (Tai et al., 2015)		N/A		46.4		84.9	N/A	N/A
LSTM-AgrLearn Impl. (Guo et al., 2018a)		N/A		N/A		N/A	90.2	76.2
LSTM - Our Impl.		86.5±0.61		45.9 ± 0.58		84.4±0.3	5 90.9±0.42	77.2±0.75
LSTM + wordMixup		90.5±0.50		48.2 ± 0.18		86.3±0.3	5 93.1±0.49	78.0±0.33
LSTM + senMixup		$89.4 {\pm} 0.40$		48.3±0.	.77	86.7±0.3	3 91.9±0.34	77.9±0.33

Thank you !