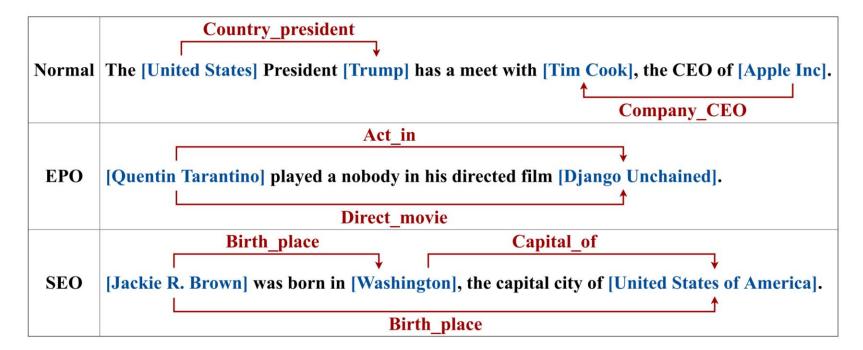
A Novel Cascade Binary Tagging Framework for Relational Triple Extraction

Zhepei Wei, Jianlin Su, Yue Wang, Yuan Tian, Yi Chang

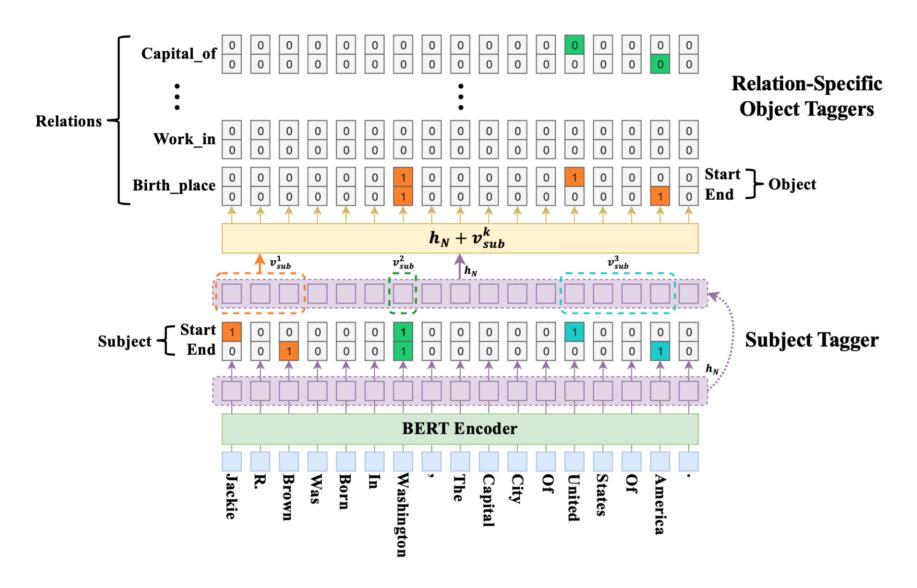
Accepted by ACL2020

Overview

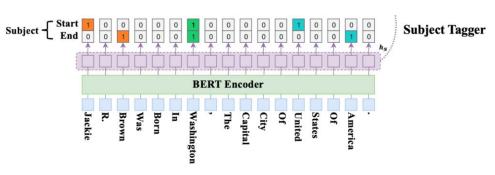
 Most previous work addresses relation extraction (RE) by learning a mapping from a pair of entities (i.e., subject and object) to a relation:


$$f(s,o) \rightarrow r$$

• This work treats RE as a learning problem of functions mapping subjects to objects: $f_r(s) \to o$


=> Naturally solve the problem of overlapping relations in RE.

Overlapping problem in RE


- There are two types of overlapping in RE:
 - Entity Pair Overlap (EPO).
 - Single Entity Overlap (SEO).

Model: Overview

Model: Subject Tagger

- Given a sentence j, it uses BERT as the encoder to obtain \mathbf{x}_j
- Employs two classifiers for identifying "start"s and "end"s of subjects.

$$p_i^{start_s} = \sigma(\mathbf{W}_{start}\mathbf{x}_i + \mathbf{b}_{start})$$
$$p_i^{end_s} = \sigma(\mathbf{W}_{end}\mathbf{x}_i + \mathbf{b}_{end})$$

• Training objective: maximizes the log likelihood of the groundtruth subject spans: $\sum \log p_{\theta}(s|\mathbf{x}_j)$

 $\sum_{s \in T_i} \log P$

where: $p_{\theta}(s|\mathbf{x})$

$$= \prod_{t \in \{start_s, end_s\}} \prod_{i=1}^{L} (p_i^t)^{\mathbf{I}\{y_i^t=1\}} (1 - p_i^t)^{\mathbf{I}\{y_i^t=0\}}$$

Model: Relation-specific Object Taggers

• For each relation, takes the representation \mathbf{v}^k_{sub} of the detected subject into account.

$$p_i^{start_o} = \sigma(\mathbf{W}_{start}^r(\mathbf{x}_i + \mathbf{v}_{sub}^k) + \mathbf{b}_{start}^r)$$
$$p_i^{end_o} = \sigma(\mathbf{W}_{end}^r(\mathbf{x}_i + \mathbf{v}_{sub}^k) + \mathbf{b}_{end}^r)$$

• Training objective: maximizes the following log likelihood:

- Datasets:
 - Highly-overlapping RE datasets: NYT and WebNLG.

Category	NY	T	WebNLG			
	Train	Test	Train	Test		
Normal	37013	3266	1596	246		
EPO	9782	978	227	26		
SEO	14735	1297	3406	457		
ALL	56195	5000	5019	703		

- Also on ACE04, NYT10-HRL, NYT11-HRL, WikiKBP.

• Achieves 17.5% and 30.2% improvements in F1-score over the best state-of-the-art method (Zeng et al., 2019).

Method		NYT		WebNLG			
	Prec.	Rec.	<i>F1</i>	Prec.	Rec.	<i>F1</i>	
NovelTagging (Zheng et al., 2017)	62.4	31.7	42.0	52.5	19.3	28.3	
$CopyR_{OneDecoder}$ (Zeng et al., 2018)	59.4	53.1	56.0	32.2	28.9	30.5	
$CopyR_{MultiDecoder}$ (Zeng et al., 2018)	61.0	56.6	58.7	37.7	36.4	37.1	
GraphRel _{1p} (Fu et al., 2019)	62.9	57.3	60.0	42.3	39.2	40.7	
GraphRel _{2p} (Fu et al., 2019)	63.9	60.0	61.9	44.7	41.1	42.9	
$CopyR_{RL}$ (Zeng et al., 2019)	77.9	67.2	72.1	63.3	59.9	61.6	
$CopyR^*_{RL}$	72.8	69.4	71.1	60.9	61.1	61.0	
$CAsRel_{random}$	81.5	75.7	78.5	84.7	79.5	82.0	
$CASRel_{LSTM}$	84.2	83.0	83.6	86.9	80.6	83.7	
CASREL	89.7	89.5	89.6	93.4	90.1	91.8	

Performance comparison in different types of overlapping.

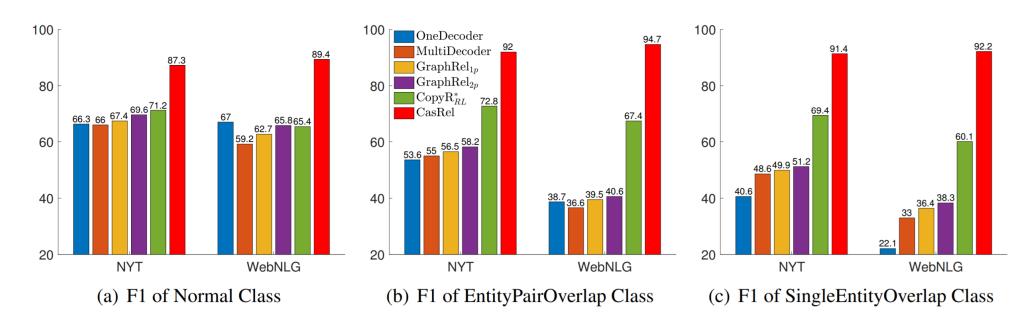


Figure 3: F1-score of extracting relational triples from sentences with different overlapping pattern.

• Results on low-overlapping RE datasets:

Method	Partial Match								Exact Match			
	ACE04		NYT10-HRL		NYT11-HRL		Wiki-KBP					
	Prec.	Rec.	<i>F1</i>	Prec.	Rec.	<i>F1</i>	Prec.	Rec.	<i>F1</i>	Prec.	Rec.	<i>F1</i>
Chan and Roth (2011)	42.9	38.9	40.8	_	_	_	_	_	_	_	_	_
MultiR (Hoffmann et al., 2011)	_	_	_	_	_	_	32.8	30.6	31.7	30.1	53.0	38.0
DS-Joint (Li and Ji, 2014)	64.7	38.5	48.3	_	_	_	_	_	_	_	_	_
FCM (Gormley et al., 2015)	_	_	_	_	_	_	43.2	29.4	35.0	_	_	_
SPTree (Miwa and Bansal, 2016)	_	_	_	49.2	55.7	52.2	52.2	54.1	53.1	_	_	_
CoType (Ren et al., 2017)	_	_	_	_	_	_	48.6	38.6	43.0	31.1	53.7	38.8
Katiyar and Cardie (2017)	50.2	48.8	49.3	_	_	_	_	_	_	_	_	_
NovelTagging (Zheng et al., 2017)	_	_	_	59.3	38.1	46.4	46.9	48.9	47.9	53.6	30.3	38.7
ReHession (Liu et al., 2017)	_	_	_	_	_	_	_	_	_	36.7	49.3	42.1
CopyR (Zeng et al., 2018)	_	_	_	56.9	45.2	50.4	34.7	53.4	42.1	_	_	_
HRL (Takanobu et al., 2019)	_	_	_	71.4	58.6	64.4	53.8	53.8	53.8	_	_	_
PA-LSTM-CRF (Dai et al., 2019)	_	_	_	_	_	_	_	_	_	51.1	39.3	44.4
CASREL	57.2	47.6	52.0	77.7	68.8	73.0	50.1	58.4	53.9	49.8	42.7	45.9