Unsupervised Domain Clusters in Pretrained Language Models

Roee Aharoni & Yoav Goldberg, ACL 2020

Abstract

- General training pipeline
- The notion of "in-domain" data is over-simplistic and vague
- Massive pre-trained LMs can cluster by domains without supervision → data-driven definition of domains
- Training on in-domain examples is better than training on all general examples
- Data selection methods: domain-cosine and domain-finetune

How do we define domains

- Data source? (TED, Paracrawl, books, ...)
- Topic (sports, finance, ...)
- Genre/Style? (spoken, scientific)
- All of the above?
- This work proposes data-driven approach to define domains

Unsupervised Domain Clusters in Pretrained LMs

- To test domain-cluster hypothesis, we sample 2000 English sentences from 5 domains: Medical, Legal, Koran, Movie Subtitiles, IT
- We then perform the following procedure with different pretrained models
 - Encode each sentence by final representation
 - Cluster the resulting 10k encoded sentences using Gaussian Mixture model
 - Measure the clustering purity vs. the source-based domain assignments

Unsupervised Clustering: Results

Domain Clustering Purity

- Pretrained models are able to encode clusters, high purity scores
- Masked LMs are better at clustering than unmasked LMs

Unsupervised Clustering: Analysis

- There are some overlap between clusters
- Data-driven domain can be better than naive domain assignments based on the source, topics, genre or styles when collecting data

▶ e.g., "...Viruses..." → Medical, "...Regularization..." → Law

Training NMT with In-Domain vs General Domain Examples

	Medical	Law	Koran	IT	Subtitles
Medical	56.5	18.3	1.9	11.4	4.3
Law	21.7	59	2.7	13.1	5.4
Koran	0.1	0.2	15.9	0.2	0.5
IT	14.9	9.6	2.8	43	8.6
Subtitles	7.9	5.5	6.4	8.5	27.3
All	53.3	57.2	20.9	42.1	27.6

- Training and testing on the in-domain examples usually gives the best results
- More data is not necessary better!

Data Selection Methods

- Two methods for data selection given a small seed in-domain examples
- **Domain-Cosine**: compute the centroid of the in-domain data. Then, select the nearest-k examples
- **Domain-Finetune**: Fine-tune a pretrained LM for binary classification using random negative sampling. Then, select top-k output, or all predicted positive examples
- Domain-Cosine + Domain-Finetune: first run Domain-Cosine, sample negative negative examples for Domain-Finetune

Data Selection: Results

	Medical	Law	Koran	IT	Subtitles	Average
Random-500k	49.8	53.3	18.5	37.5	25.5	36.92
Moore-Lewis-Top-500k	55	58	21.4	42.7	27.3	40.88
Domain-Cosine-Top-500k	52.7	58	22	42.5	27.1	40.46
Domain-Finetune-Top-500k	54.8	58.8	21.8	43.5	27.4	41.26
Domain-Finetune-Positive	55.3	58.7	19.2	42.5	27	40.54
Oracle	56.5	59	15.9	43	27.3	40.34
All	53.3	57.2	20.9	42.1	27.6	40.22

Thank you !