Neural Graph Matching Networks for Chinese Short Text Matching

Lu Chen, Yanbin Zhao, Boer Lv, Lesheng Jin, Zhi Chen, Su Zhu, Kai Yu ACL 2020

Motivation

- Chinese word segmentation is not as good as perfect
- This paper propose neural graph matching networks
- This framework is capable of dealing with multi-granular input information (word level and token level)
- Sentence matching: Matching the semantic of two sentences

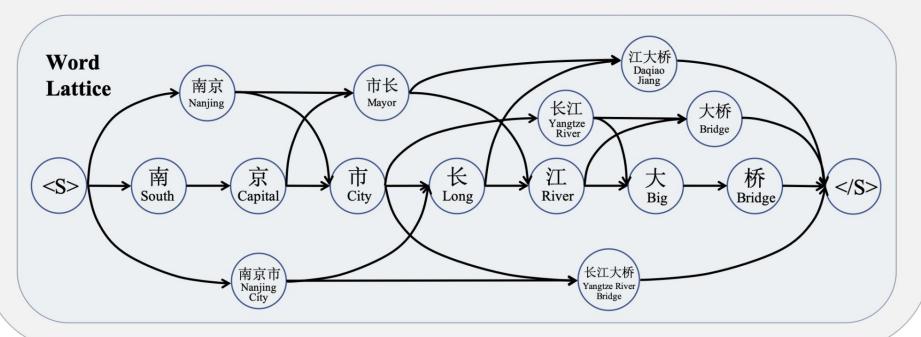
_

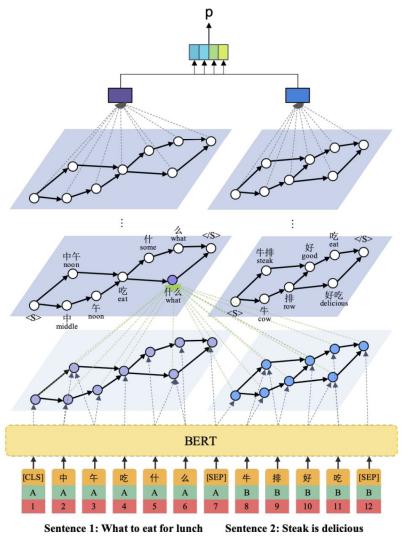
Original Sentence: 南京市长江大桥(South | Capital | City | Long | River | Big | Bridge)

Segment-1: 南京市 / 长江大桥(Nanjing City / Yangtze River Bridge)

Segment-2: 南京市 / 长江 / 大桥 (Nanjing City / Yangtze River / Bridge)

Segment-3: 南京 / 市长 / 江大桥 (Nanjing / Mayor / Daqiao Jiang)





Self hidden vectors

$$\mathbf{m}_{i}^{fw} = \sum_{v_{j} \in \mathcal{N}_{fw}(v_{i})} \alpha_{ij} \left(\mathbf{W}^{fw} \mathbf{h}_{j}^{l-1} \right),$$

$$\mathbf{m}_{i}^{bw} = \sum_{v_{k} \in \mathcal{N}_{bw}(v_{i})} \alpha_{ik} \left(\mathbf{W}^{bw} \mathbf{h}_{k}^{l-1} \right),$$
(1)

Cross-sentence hidden vectors

 $v_a \in \mathcal{V}^b$

$$\mathbf{m}_{i}^{b1} = \sum_{v_{m} \in \mathcal{V}^{b}} \alpha_{im} \left(\mathbf{W}^{fw} \mathbf{h}_{m}^{l-1} \right),$$

$$\mathbf{m}_{i}^{b2} = \sum_{v_{m} \in \mathcal{V}^{b}} \alpha_{iq} \left(\mathbf{W}^{bw} \mathbf{h}_{q}^{l-1} \right).$$
(2)

Update representation

Multiperspective distances

$$d_k = \operatorname{cosine}\left(\mathbf{w}_k^{cos} \odot \mathbf{m}_i^{self}, \mathbf{w}_k^{cos} \odot \mathbf{m}_i^{cross}\right),$$

Representation

$$\mathbf{h}_{i}^{l} = ext{FFN}\left(\left\lceil\mathbf{m}_{i}^{self},\mathbf{d}_{i}
ight
ceil
ight),$$

Relation distribution

$$p = ext{FFN}\left(\left[\mathbf{g}^a, \mathbf{g}^b, \mathbf{g}^a \odot \mathbf{g}^b, |\mathbf{g}^a - \mathbf{g}^b|\right]\right)$$

Models	BQ		LCQMC	
	ACC.	F 1	ACC.	F1
Text-CNN	68.5	69.2	72.8	75.7
BiLSTM	73.5	72.7	76.1	78.9
Lattice-CNN	78.2	78.3	82.1	82.4
BiMPM	81.9	81.7	83.3	84.9
ESIM-char	79.2	79.3	82.0	84.0
ESIM-word	81.9	81.9	82.6	84.5
GMN (Ours)	84.2	84.1	84.6	86.0
BERT	84.5	84.0	85.7	86.8
BERT-wwm	84.9	_	86.8	_
BERT-wwm-ext	84.8	_	86.6	_
ERNIE	84.6	_	87.0	_
GMN-BERT (Ours)	85.6	85.5	87.3	88.0