Semi-supervised Learning Models

Outline

- Semi-supervised learning with consistency regularization
 - Supervised + consistency regularization (unsupervised)
 - 2 forms Consistency regularization: data augmentation and teacher-student
- Γ-Model, Π-Model (Ramsmus et al., NIPS 2015; Sajjadi et al., NIPS 2016), simple data augmentation
- Universal data augmentation (UDA) (Xie et al., 2019), complex data-augmentation
- Temporal Ensemble (Laine et al., ICLR 2017), teacher-student
- Mean Teachers (Tarvainen et al., NIPS 2017), teacher-student
- FixMatch (Sohn et al., 2020), simple-complex data-augmentation + teacher-student
- Towards NLP

Semi-supervised Learning with Consistency Regularization

Supervised part

$$L(x_l, y_l, \theta) = CE(q(y_l|x_l), p(y|x_l; \theta))$$

- Consistency regularization part (a classifier should give consistency output for similar data points (invariant semantics, changing as many pixels of an image without changing its meaning)): 2 forms
 - data augmentation: the two inputs are similar to each other $x_{
 m ul} \sim x_{
 m ul}^+$,

$$L_c(x_{\rm ul},\theta) = \mathcal{J}(p(y|x_{\rm ul};\theta), \ p(y|x_{\rm ul}^+;\theta))$$

▶ teacher-student: the student p tries to match the teacher p^+ 's prediction, teacher and student have similar classifiers $p \sim p^+$, e.g., same architecture but different parameters

$$L_c(x_{\rm ul}, \theta) = \mathcal{J}(p(y|x_{\rm ul}; \theta), p^+(y|x_{\rm ul}; \theta^+))$$

- Note there is no clear distinction between the two forms:
 - ▶ both x_{ul} and x_{ul}^+ can be augmentation of the same input
 - \blacktriangleright classifier p can also apply data augmentation
 - if the classifier p⁺ results in a fixed discrete pseudo-label or continuous distribution (and is not back-propagated) then the method belongs to teacher-student form, else the method is considered data augmentation

 $\Gamma\text{-}\mathsf{Model}$ and $\Pi\text{-}\mathsf{Model},$ and UDA – Data Augmentation

$$L_c(x_{\rm ul}, \theta) = \mathcal{J}(p(y|x_{\rm ul}; \theta), \ p(y|x_{\rm ul}^+; \theta))$$

• x_{ul} and x_{ul}^+ are both augmentation of the same inputs

- explicit augmentation: for images, invariant transformations such as random crop, flip, rotate, cutout images, changing brightness, color, contrast
- implicit augmentation: model's internal stochasticity such as dropout (different passes have different dropouts thus produce different outputs), virtual adversarial examples, mix-up (strange but interesting idea)
- $\Gamma\text{-Model}$ and $\Pi\text{-Model}$ apply simple augmentation: dropout + random crop and flip images
- (Universal data augmentation) UDA applies a complex reinforcement learning strategy to find the best set of augmentations out of 16 augmentation choices (+ their parameters) for each image domain.

Temporal Ensemble and Mean Teacher - teacher-student

$$L_c(x_{\rm ul},\theta) = \mathcal{J}(p(y|x_{\rm ul};\theta), \ p^+(y|x_{\rm ul};\theta^+))$$

Temporal Ensemble

- \blacktriangleright output Z of p^+ of an input is an accumulated prediction of p of that input
- $p^+ = Z = \alpha Z + (1 \alpha)z$, where z is the current prediction,
- Z is first initialized to be 0

Mean Teacher

- \blacktriangleright parameters θ^+ of p^+ is an accumulated parameters of p
- ▶ $\theta^+ = \alpha \theta^+ + (1 \alpha) \theta$, where θ is the current parameters
- θ^+ is first initialized to be 0

FixMatch – simple-complex data-augmentation + teacher-student

- teacher classifier
 - apply simple data augmentation
 - the classifier's output is the class with highest probability (larger than some threshold)
- student classifier:
 - apply complex data augmentation, i.e., RL strategy
 - student tries to match output of the teacher classifier.

Towards NLP

- Teacher-student seems "easy" to apply
 - Single-/Multi-source cross-lingual NER via Teacher-Student Learning (Wu et al., ACL 2020)
- Data augmentation
 - implicit augmentation: dropout, virtual adversarial examples, ... they work but not as good as explicit augmentation
 - explicit augmentation:
 - ★ it is not easy to do since words are discrete, if we change few words we may change the semantics
 - random noise injection: embeddings noise, spelling error, unigram noising, ...
 - k lexical substitutions (wordnet, word-embeddings, masked language model),
 - back translation: translate sentences into different languages then translate them back to original language
 - ★ generative methods

Current Benchmarks on Text Classifications

Fully supervised baseline								
Datasets (# Sup examples)		IMDb (25k)	Yelp-2 (560k)	Yelp-5 (650k)	Amazon-2 (3.6m)	Amazon-5 (3m)	DBpedia (560k)	
Pre-BERT SOTA BERT _{LARGE}		4.32 4.51	2.16 1.89	29.98 29.32	3.32 2.63	34.81 <i>34.17</i>	0.70 <i>0.64</i>	
Semi-supervised setting								
Initialization	UDA	IMDb (20)	Yelp-2 (20)	Yelp-5 (2.5k)	Amazon-2 (20)	Amazon-5 (2.5k)	DBpedia (140)	
Random	×	43.27 25.23	40.25 8.33	50.80 41.35	45.39 16.16	55.70 44.19	41.14 7.24	
BERTBASE	×	18.40 5.45	13.60 2.61	41.00 33.80	26.75 3.96	44.09 38.40	2.58 1.33	
BERTLARGE	×	11.72 4.78	10.55 2.50	38.90 33.54	15.54 3.93	42.30 37.80	1.68 1.09	
BERT _{FINETUNE}	×	6.50 4.20	2.94 2.05	32.39 32.08	12.17 3.50	37.32 37.12	-	

Thank you !

Current Benchmarks on Image Classifications

		CIFAR-10	
Method	40 labels	250 labels	4000 labels
П-Model	-	54.26 ± 3.97	14.01 ± 0.38
Pseudo-Labeling	-	$49.78 {\pm} 0.43$	$16.09 {\pm} 0.28$
Mean Teacher	-	32.32 ± 2.30	$9.19 {\pm} 0.19$
MixMatch	$47.54{\pm}11.50$	$11.05 {\pm} 0.86$	6.42 ± 0.10
UDA	29.05 ± 5.93	$8.82{\pm}1.08$	$4.88 {\pm} 0.18$
ReMixMatch	19.10 ±9.64	5.44 ±0.05	$4.72 {\pm} 0.13$
FixMatch (RA)	13.81±3.37	5.07 ±0.65	4.26 ±0.05
FixMatch (CTA)	11.39 ±3.35	5.07 ±0.33	4.31 ±0.15