Document-level Event-based Extraction Using Generative Template-filling Transformers

Xinya Du, Alexander Rush, Claire Cardie
Overview

• This paper introduces a smart way based on seq2seq architecture to do event extraction at document-level.
• The proposed model is constructed completely based on the components of the pretrained BERT, NO extra parameters added.
• They propose to use an alternate metric for evaluation, which is slot-based, instead of mention-based as before.
• The proposed model significantly improves the performance with the proposed evaluation metric.
Overview

- Document-level event extraction:

 Input document:
 ...
 A bomb exploded in a Pilmaí alley destroying some [water pipes].
 According to unofficial reports, the bomb contained [125 to 150 grams of TnT] and was placed in the back of the [Pilmaí telephone company building].
 The explosion occurred at 2350 on 16 January, causing panic but no casualties.
 The explosion caused damages to the [telephone company offices]. It also destroyed a [public telephone booth] and [water pipes].
 Witnesses reported that the bomb was planted by [[two men] wearing sports clothes], who escaped into the night.
 ... They were later identified as [[Shining Path] members].

<table>
<thead>
<tr>
<th>Role</th>
<th>Role-filler Entities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perpetrator Individual</td>
<td>two men, two men wearing sports clothes, Shining Path members</td>
</tr>
<tr>
<td>Perpetrator Organization</td>
<td>Shining Path</td>
</tr>
<tr>
<td>Physical Target</td>
<td>water pipes, water pipes</td>
</tr>
<tr>
<td>Weapon</td>
<td>Pilmaí telephone company building, telephone company offices, public telephone booth</td>
</tr>
<tr>
<td>Victim</td>
<td>-</td>
</tr>
</tbody>
</table>
Proposed Evaluation Metric

• "Document-level event-based template filling is ultimately an entity-based task"

<table>
<thead>
<tr>
<th>Role</th>
<th>Role-filler Entities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perpetrator Individual</td>
<td>two men, two men wearing sports clothes, Shining Path members</td>
</tr>
<tr>
<td>Perpetrator Organization</td>
<td>Shining Path</td>
</tr>
<tr>
<td>Physical Target</td>
<td>water pipes, water pipes</td>
</tr>
<tr>
<td></td>
<td>Pilmaí telephone company building, telephone company building, telephone company offices</td>
</tr>
<tr>
<td></td>
<td>public telephone booth</td>
</tr>
<tr>
<td>Weapon</td>
<td>125 to 150 grams of TnT</td>
</tr>
<tr>
<td>Victim</td>
<td>-</td>
</tr>
</tbody>
</table>
Proposed Evaluation Metric

- Reference (gold) role-filler entities of one role in a document \(d \):
 \[
 R(d) = \{ R_i : i = 1, 2, ..., |R(d)| \}
 \]

- Predicted role-filler entities:
 \[
 S(d) = \{ S_i : i = 1, 2, ..., |S(d)| \}
 \]

- Consider sets \(R_m \subset R, S_m \subset S \) where \(m = \min(|R(d)|, |S(d)|) \)

- \(G_m \) is the set of all possible one-to-one maps (of size-\(m \)) between subsets of \(R \) and \(S \).

- First step: find best alignment between \(R \) and \(S \):
 \[
 g^* = \arg \max_{g \in G_m} \Phi(g) = \arg \max_{g \in G_m} \sum_{r \in R_m} \phi(r, g(r))
 \]

Where \(\phi(r, s) = \begin{cases}
1, & \text{if } s \subseteq r \\
0, & \text{otherwise}
\end{cases} \)
Proposed Evaluation Metric

• Second step: compute scores with the best alignment found:

\[\Phi(g^*) = \sum_{r \in R_m^*} \phi(r, g^*(r)) \]

\[prec = \frac{\Phi(g^*)}{\sum_i \phi(S_i, S_i)} \]

\[recall = \frac{\Phi(g^*)}{\sum_i \phi(R_i, R_i)} \]

\[F = \frac{2 \cdot prec \cdot recall}{prec + recall} \]

• This new metric is based on CEAF, which is originally used for coreference resolution measure.
Model: Main Idea

• Use an encoder to encode the context of the whole document (usually short in MUC dataset)
• Use a decoder to generate the answers for the slots of the template of the document.
• Modify pretrained BERT to make the encoder and the decoder work at the same place.
Model: Overall architecture

[Diagram showing the overall architecture of a model with layers for Pointer Selection, BERT, and causal masking, along with examples of source and target tokens.]
Model: Encoder & Decoder at the same place

- Source tokens: input document
- Target tokens: gold entities to fill in the given template, the entities are arranged in the predefined order which expresses which entities are used to fill which role:

\[
<\text{S}> e_{1b}^{(1)}, e_{1e}^{(1)}, ... \text{ [SEP]} \\
\quad e_{1b}^{(2)}, e_{1e}^{(2)}, ... \text{ [SEP]} \\
\quad e_{1b}^{(3)}, e_{1e}^{(3)}, e_{2b}^{(3)}, e_{2e}^{(3)}, ... \text{ [SEP]} \\
\quad ...
\]
Model: Autogressive masking

• They design a special mask for running the encoder and the decoder at the same place (i.e., BERT):

![Diagram](image)

Figure 3: Partially causal masking strategy (M). (White cell: unmasked; Grey cell: masked.)
Model: Pointer Embeddings

- To help the decoder be aware of the positions of the extracted entities in the source document, they use pointer embeddings which are positional embeddings of the extracted source tokens.
Model: Pointer Decoding

• At timestep t, compute the dot product of the current target token embedding with the source token embeddings:

$$z_0, z_1, ..., z_m = \hat{y}_t \cdot \hat{x}_0, \hat{y}_t \cdot \hat{x}_1, ..., \hat{y}_t \cdot \hat{x}_m$$

• Leverages the token classifier of BERT, which is already pretrained with the Masked Language Modeling task to make prediction:

$$p_0, p_1, ..., p_m = \text{softmax}(z_0, z_1, ..., z_m)$$
Results

<table>
<thead>
<tr>
<th></th>
<th>PERPIND</th>
<th>PERPORG</th>
<th>TARGET</th>
<th>VICTIM</th>
<th>WEAPON</th>
</tr>
</thead>
<tbody>
<tr>
<td>NST</td>
<td>48.39 / 32.61 / 38.96</td>
<td>60.00 / 43.90 / 50.70</td>
<td>54.96 / 52.94 / 53.93</td>
<td>62.50 / 63.16 / 62.83</td>
<td>61.67 / 61.67 / 61.67</td>
</tr>
<tr>
<td>(Du and Cardie, 2020)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DYGIE++</td>
<td>59.49 / 34.06 / 43.32</td>
<td>56.00 / 34.15 / 42.42</td>
<td>53.49 / 50.74 / 52.08</td>
<td>60.00 / 66.32 / 63.00</td>
<td>57.14 / 53.33 / 55.17</td>
</tr>
<tr>
<td>(Wadden et al., 2019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTT</td>
<td>65.48 / 39.86 / 49.55</td>
<td>66.04 / 42.68 / 51.85</td>
<td>55.05 / 44.12 / 48.98</td>
<td>76.32 / 61.05 / 67.84</td>
<td>61.82 / 56.67 / 59.13</td>
</tr>
</tbody>
</table>

Table 1: Per-role performance scored by CEAF-TF (reported as P/R/F1, highest F1 for each role are boldfaced).
Results

<table>
<thead>
<tr>
<th>Models</th>
<th>P</th>
<th>R</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NST</td>
<td>56.82</td>
<td>48.92</td>
<td>52.58</td>
</tr>
<tr>
<td>(Du and Cardie, 2020)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DyGIE++</td>
<td>57.04</td>
<td>46.77</td>
<td>51.40</td>
</tr>
<tr>
<td>(Wadden et al., 2019)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTT</td>
<td>64.19**</td>
<td>47.36</td>
<td>54.50*</td>
</tr>
</tbody>
</table>

Table 2: Micro-average results measured by CEAF-TF (the highest number of each column is boldfaced). Stat. significance is indicated with **(p < 0.01), *(p < 0.1). All significance tests are computed using the paired bootstrap procedure (Berg-Kirkpatrick et al., 2012).