Unsupervised Domain Adaptation

Outline

- Two domain adaptation models that perform explicit class alignment via cross-domain class prototypes on top of typical feature alignment
- Moving Semantic Transfer Network (MSTN) (Xie et al., ICML 2018)
 - The paper proposes a new module that pseudo-labels batches of unlabeled target examples and then aligns class prototypes of labeled source and newly pseudo-labeled target examples during each iteration
- Progressive Progressive Feature Alignment (PFAN) (Chen et al., CVPR 2019), an incremental improvement upon the MSTN model
 - The model separately pseudo-label all unlabeled examples based on encoded source prototypes the and selectively collect "easy" pseudo-labeled ones to form smaller pseudo-labeled target dataset
 - Then, the model performs class prototypes alignment
- Overall, both models do not provide good performance compared to the implicit joint domain-class alignment (JDCA), but these papers present good ideas on how to solve the class alignment problem (the idea of pseudo-labeling has been applied to many other topics)

Moving Semantic Transfer Network (MSTN): Class Alignment Objective

- New module: for each iteration with batches of labeled source and unlabeled target examples
 - pseudo-label the batch of unlabeled target examples
 - compute the local class prototypes of both labeled source and pseudo-labeled target batches
 - update the global class prototypes based on exponential moving average
 - (new objective) minimize the distance between the cross-domain global class prototypes

Algorithm : MSTN's procedure to compute the additional objective of class alignment

Require: labeled source examples D^s , and unlabeled target examples D^t

- 1: for epoch in num epochs do
- 2: initialize global class prototypes of source and target domains $c_{k(I)}^{s}$ and $c_{k(I)}^{t}$ to be 0
- 3: for iter *i* in num iters do
- 4: get source and target batches of examples $\mathcal{B}_i^s \in \mathcal{D}^s$ and $\mathcal{B}_i^t \in \mathcal{D}^t$
- 5: pseudo-label the batch of unlabeled target examples $\hat{B}_{i}^{t} = \{(\boldsymbol{x}_{i}^{t}, \hat{y}_{i}^{t})\}$

$$\widehat{y}_i^t = \operatorname{argmax}_k h(g(\boldsymbol{x}_i^t))$$

6: compute local (batch) class prototypes of both domains

$$c_{k(i)} = \frac{1}{|\mathcal{B}_i|} \sum_{(\boldsymbol{x}_i, y_i) \in \mathcal{B}_i} g(\boldsymbol{x}_i)$$

- 7: update global class prototypes of both domains $c_{k(I)} = \alpha c_{k(I)} + (1 - \alpha) c_{k(i)}$
- 8: additional objective: aligning global class prototypes of both domains

$$L_{ca} = \sum_{k}^{K} \psi(c_{k(I)}^{s}, \hat{c}_{k(I)}^{t})$$

9: end for

10: end for

3/9

Moving Semantic Transfer Network (MSTN): Notes

- We should use moving average global prototypes instead of local batch prototypes
 - it is possible that some classes are missing in the current batch since the batch is randomly selected
 - if the batch size is small, even one false pseudo-labeled example will lead to the large deviation between pseudo-labeled prototypes and true prototypes

Progressive Feature Alignment (PFAN): Class Alignment Object

- Easy-to-Hard Transfer Strategy (EHTS)
 - pseudo-label all target examples based on the encoded source prototypes and select most "easy" pseudo-labeled ones to form a pseudo-labeled dataset
- Adaptive Prototype Alignment (APA)
 - perform class alignment by computing and aligning the class prototypes of labeled source and pseudo-labeled target examples

Algorithm : PFAN's procedure to compute the additional objective of class alignment

- **Require:** labeled source examples D^s , and unlabeled target examples D^t
- 1: for epoch in num epochs do
- 2: \mapsto EHTS
- 3: compute the class prototypes of source domain $c_k^s = \frac{1}{|\mathcal{D}^s|} \sum_{(\boldsymbol{x}_i^s, y_i^s) \in \mathcal{D}_i^s} g(\boldsymbol{x}_i^s)$
- 4: pseudo-label all unlabeled target examples, and select only "easy" examples that have similarity score above a threshold

5: \mapsto APA

initialize global class prototypes of source and target domains c^{*}_{b(I)} and c^t_{b(I)} to be 0

- for iter i in num iters do
- get source and pseudo-labeled target batches of examples B^s_i ∈ D^s and B^t_i ∈ D^t
- 9: compute local (batch) class prototypes of both domains

 $c_{k(i)} = \frac{1}{|B_i|} \sum_{(\boldsymbol{x}_i, y_i) \in B_i} g(\boldsymbol{x}_i)$

10: update global class prototypes of both domains

$$\overline{c}_{k(i)} = \frac{1}{i} \sum_{j=1}^{i} c_{k(j)}$$

 $\rho_i = \psi(\overline{c}_{k(i)}, c_{k(I)})$
 $c_{k(I)} = \rho_i^2 c_{k(I)} + (1 - \rho_i^2) \overline{c}_k$

 additional objective: aligning global class prototypes of both domains

$$L_{ca} = \sum_{k}^{K} \psi(c_{k(I)}^{s}, \hat{c}_{k(I)}^{t})$$
end for

12: end f

13: end for

Progressive Feature Alignment (PFAN): EHTS

- EHTS: pseudo-label all target examples and select most "easy" pseudo-labeled ones to form a pseudo-labeled dataset
 - \blacktriangleright compute source prototypes c_k^S for every classes

$$c_k^s = \frac{1}{N_k^s} \sum_{(\boldsymbol{x}_i^s, y_i^s) \in \mathcal{D}_k^s} g(\boldsymbol{x}_i^s)$$

 cluster and pseudo-label all unlabeled target examples to the corresponding source prototypes using a similarity metric

$$\widehat{y}_i = \operatorname*{argmax}_k \psi(g(\boldsymbol{x}_i^T), c_k^S)$$

- \blacktriangleright rank and select only "easy" pseudo-labeled examples that have similarity scores above an annealing threshold τ
 - after each training epoch, since the model is better at performing representations and likely gathers more "easy" examples
 - in contrast, we want to keep the selection ratio constant, so we gradually increase the threshold to harder the selection

Progressive Feature Alignment (PFAN): APA

- APA: perform class alignment by computing and aligning the class prototypes of labeled source and pseudo-labeled target examples
 - \blacktriangleright initialize global prototypes $c^s_{k(I)}$ and $c^t_{k(I)}$ of all examples from \mathcal{D}^s and $\widehat{\mathcal{D}}^t$ respectively
 - ▶ at each iter *i*, compute local prototypes $c_{k(i)}^s$ and $c_{k(i)}^t$ of the batches \mathcal{B}_i^s and $\widehat{\mathcal{B}}_i^t$ respectively, then update the global prototypes as follows

$$\overline{c}_{k(i)} = \frac{1}{i} \sum_{j=1}^{i} c_{k(j)}$$

$$\rho_i = \psi(\overline{c}_{k(i)}, c_{k(I)})$$

$$c_{k(I)} = \rho_i^2 \overline{c}_{k(i)} + (1 - \rho_i^2) c_{k(I)}$$

 (new objective) minimize the distance between cross-domain global class prototypes

$$L_{\text{apa}}(c_{k(I)}^{s}, c_{k(I)}^{t}) = \|c_{k(I)}^{s} - c_{k(I)}^{t}\|^{2}$$

Progressive Feature Alignment (PFAN): Notes

• In order to prevent models biased over (over-reliance on) source classification, we suggest to gradually reduce and remove the convergence of the source classification by adding a controllable temperature variable into the last softmax output function

$$\widehat{q}_i = \frac{\exp z_i/T}{\sum_j \exp z_j/T}$$

Thank you !