Cross-media Structured Common Space for Multimedia Event Extraction

Manling Li*, Alireza Zareian*, Qi Zeng, Spencer Whitehead, Di Lu, Heng Ji, Shih-Fu Chang

ACL 2020

33% of images in 100 randomly selected VOA articles contain visual objects that serve as event arguments and are not mentioned in the text.

Figure 1: An example of Multimedia Event Extraction. An event mention and some event arguments (*Agent* and *Person*) are extracted from text, while the vehicle arguments can only be extracted from the image.

- Event extraction is independently studied in Computer Vision (CV) and Natural Language Processing (NLP), significantly different in terms of task definition, data domain, methodology, and terminology.
- ACE dataset:

- Event extraction is independently studied in Computer Vision (CV) and Natural Language Processing (NLP), significantly different in terms of task definition, data domain, methodology, and terminology.
- ImSitu dataset:

hand

dolphin

pool

fish

man

imSitu Dataset						
verbs	504					
images	126,102					
situations per image	3					
total annotations	1,481,851					
unique entity types (>3)	11,538 (6,794)					
unique roles (role types)	1,788 (190)					
images per verb (range)	250.2 (200 - 400)					
unique situations (>3)	205,095 (21,505)					

- Event extraction is independently studied in Computer Vision (CV) and Natural Language Processing (NLP), significantly different in terms of task definition, data domain, methodology, and terminology.
- => They propose a new task: **MultiMedia Event Extraction** (M²E²):
 - + An evaluation dataset: 245 fully annotated news articles.
 - + A new method for the task that learns a structured multimedia embedding space: Weakly Aligned Structured Embedding (WASE).

M²E² dataset

- 245 documents selected from 108,693 multimedia VOA articles.
- Contains 8 ACE types (i.e., 24% of all ACE types), mapped to 98 imSitu types (i.e., 20% of all imSitu types), encompassing 52% ACE events.
- Annotators: 8 with an Inter-Annotator Agreement score of 81.2%.
- This dataset is for Evaluation Only.

Event Type	Argument Role
Movement.Transport (223 53)	Agent (46 64), Artifact (179 103), Vehicle (24 51), Destination (120 0), Origin (66 0)
Conflict.Attack (326 27)	Attacker (192 12), Target (207 19), Instrument (37 15), Place (121 0)
Conflict.Demonstrate (151 69)	Entity (102 184), Police (3 26), Instrument (0 118), Place (86 25)
Justice.ArrestJail (160 56)	Agent (64 119), Person (147 99), Instrument (0 11), Place (43 0)
Contact.PhoneWrite (33 37)	Entity (33 46), Instrument (0 43), Place (8 0)
Contact.Meet (127 79)	Participant (119 321), Place (68 0)
Life.Die (244 64)	Agent (39 0), Instrument (4 2), Victim (165 155), Place (54 0)
Transaction. TransferMoney (33 6)	Giver (19 3), Recipient (19 5), Money (0 8)

Table 1: Event types and argument roles in M^2E^2 , with expanded ones in bold. Numbers in parentheses represent the counts of textual and visual events/arguments.

Sour	ce	Event N	Jention	Argument Role				
sentence image		textual	visual	textual	visual			
6,167	1,014	1,297	391	1,965	1,429			

Table 2: M^2E^2 data statistics.

Text Event Extraction

- Use the CAMR parser (Wang et al., 2015b, a, 2016) to obtain an AMR graph for each sentence.
- Word representation = Glove + POS + NER + Position

GCN:

$$w_{i}^{(k+1)} = f(\sum_{j \in \mathcal{N}(i)} g_{ij}^{(k)} (\boldsymbol{W}_{E(i,j)} \boldsymbol{w}_{j}^{(k)} + \boldsymbol{b}_{E(i,j)}^{(k)})),$$
(1)
Prediction:

$$P(y_{e}|w) = \frac{\exp\left(\boldsymbol{W}_{e}\boldsymbol{w}^{\mathbb{C}} + \boldsymbol{b}_{e}\right)}{\sum_{e'} \exp\left(\boldsymbol{W}_{e'}\boldsymbol{w}^{\mathbb{C}} + \boldsymbol{b}_{e'}\right)},$$

$$P(y_{a}|t) = \frac{\exp(\boldsymbol{W}_{a}[\boldsymbol{t}^{\mathbb{C}};\boldsymbol{w}^{\mathbb{C}}] + \boldsymbol{b}_{a})}{\sum_{a'} \exp\left(\boldsymbol{W}_{a'}[\boldsymbol{t}^{\mathbb{C}};\boldsymbol{w}^{\mathbb{C}}] + \boldsymbol{b}_{a'}\right)}.$$
(2)

Image Event Extraction

- Produce a situation graph (similar to ARM) for each image:
 - > central node is labeled as a verb.
 - > neighbor nodes are arguments labeled as (noun, role).
- Propose two ways to construct a situation graphs:
 - > Object-based (predefined-type object detection).
 - > Attention-based (role-driven object detection).

Image Event Extraction: Object-based

- Object detection: use a Faster R-CNN (*Ren et al., 2015*) trained on Open Images with 600 object types.
- Use VGG-16 CNN (Simonyan and Zisserman, 2014) to obtain image/object representation.
- Image representation: m; object representations: o_i
- Embedding layer: $\hat{\boldsymbol{m}} = MLP_m(\boldsymbol{m})$, $\hat{\boldsymbol{o}}_i = MLP_o(\boldsymbol{o}_i)$
- Verb and noun prediction: $P(v|m) = \frac{\exp(\hat{m}v)}{\sum_{n'} \exp(\hat{m}v')}$,

$$P(n|o_i) = \frac{\exp(\hat{o}_i n)}{\sum_{n'} \exp(\hat{o}_i n')},$$

• Argument role labeling:
$$P(r_i|o_i) = \sigma(MLP_r(\hat{o}_i))$$

$$\mathcal{L}_v = -\log P(v^*|m),$$

$$\mathcal{L}_r = -\log(P(r_i^*|o_i) + P(n_i^*|o_i))$$

Image Event Extraction: Attention-based

- Many object types are not covered by the pretrained R-CNN model.
- Use VGG-16 CNN to obtain key vectors k_i for 7x7 local regions of the input image.
- For each possible role of the event type (i.e., verb), form the query vector: $q_r = W_q[r; m] + b_q$
- Attention is then done over the 7x7 regions to obtain object representations:

$$h_i = \frac{\exp(\boldsymbol{q}_r \boldsymbol{k}_i)}{\sum_{j \in 7 \times 7} \exp(\boldsymbol{q}_r \boldsymbol{k}_j)} \qquad \boldsymbol{o}_r = \sum_i h_i \boldsymbol{m}_i$$

Verb and noun predictions are done similar as in object-based method.

Cross-media joint training

- Form the structured common space by learning to map captions <-> images via VOA image-caption pair data.
- Soft alignment from each words to image objects and vice versa:

$$\alpha_{ij} = \frac{\exp\left(\boldsymbol{w}_{\boldsymbol{i}}^{\mathbb{C}}\boldsymbol{o}_{\boldsymbol{j}}^{\mathbb{C}}\right)}{\sum_{j'}\exp\left(\boldsymbol{w}_{\boldsymbol{i}}^{\mathbb{C}}\boldsymbol{o}_{\boldsymbol{j'}}^{\mathbb{C}}\right)}, \beta_{ji} = \frac{\exp\left(\boldsymbol{w}_{\boldsymbol{i}}^{\mathbb{C}}\boldsymbol{o}_{\boldsymbol{j}}^{\mathbb{C}}\right)}{\sum_{i'}\exp\left(\boldsymbol{w}_{\boldsymbol{i'}}^{\mathbb{C}}\boldsymbol{o}_{\boldsymbol{j}}^{\mathbb{C}}\right)}$$

Representations aligned to the common space:

$$oldsymbol{w}_i' = \sum_j lpha_{ij} oldsymbol{o}_j^{\mathbb{C}} \ , \ oldsymbol{o}_j = \sum_i eta_{ji} oldsymbol{w}_i^{\mathbb{C}}$$

Alignment cost:

$$\langle s, m \rangle = \sum_{i} || \boldsymbol{w}_{i} - \boldsymbol{w}'_{i} ||_{2}^{2} + \sum_{j} || \boldsymbol{o}_{j} - \boldsymbol{o}'_{j} ||_{2}^{2}$$

Training objective:

$$\mathcal{L}_c = \max(0, 1 + \langle s, m \rangle - \langle s, m^- \rangle)$$

Training

Training objective for verb and noun prediction:

$$\mathcal{L}_v = -\log P(v^*|m),$$

$$\mathcal{L}_r = -\log(P(r_i^*|o_i) + P(n_i^*|o_i))$$

Training objectives for shared classifiers:

$$\mathcal{L}_e = -\sum_{w} \log P(y_e|w) - \sum_{m} \log P(y_e|m),$$
$$\mathcal{L}_a = -\sum_{t} \log P(y_a|t) - \sum_{o} \log P(y_a|o),$$

Training objective for shared common space:

$$\mathcal{L}_c = \max(0, 1 + \langle s, m \rangle - \langle s, m^- \rangle)$$

Overall training objective:

$$\mathcal{L} = \mathcal{L}_v + \mathcal{L}_r + \mathcal{L}_e + \mathcal{L}_a + \mathcal{L}_c$$

Inference

- Given a multimedia document with:
 > a set of sentences: S = {s₁, s₂,...}
 > a set of images: M = {m₁, m₂,...,}
- First, compute pair-wise similarities $\langle s, m \rangle$
 - > select the closest image for each sentence.
 - > select the closest sentence for each image.
- Compute the aligned representations for words (and objects similarly):

 $\gamma = \exp(-\langle s, m \rangle)$ $\boldsymbol{w}_i'' = (1 - \gamma) \boldsymbol{w}_i + \gamma \boldsymbol{w}_i'$

Predictions are then done with the aligned representations.

Tra	Model	Text-Only Evaluation						Image-Only Evaluation						Multimedia Evaluation					
aini		Event Mention			Argument Role		Event Mention			Argument Role			Event Mention			Argument Role			
gui		P	R	F_1	P	R	F_1	P	R	F_1	P	R	F_1	P	R	F_1	P	R	F_1
	JMEE	42.5	58.2	48.7	22.9	28.3	25.3		-	-	-	-	-	42.1	34.6	38.1	21.1	12.6	15.8
fex	GAIL	43.4	53.5	47.9	23.6	29.2	26.1	-	-	-	-	-	-	44.0	32.4	37.3	22.7	12.8	16.4
ſ	$WASE^{\mathbb{T}}$	42.3	58.4	48.2	21.4	30.1	24.9	-	_	-	-	-	-	41.2	33.1	36.7	20.1	13.0	15.7
Image	WASE ^I _{att}	-		-	-	-	271	29.7	61.9	40.1	9.1	10.2	9.6	28.3	23.0	25.4	2.9	6.1	3.8
	WASE ^I _{obj}	-	-	-	-	-	-	28.6	59.2	38.7	13.3	9.8	11.2	26.1	22.4	24.1	4.7	5.0	4.9
N	VSE-C	33.5	47.8	39.4	16.6	24.7	19.8	30.3	48.9	26.4	5.6	6.1	5.7	33.3	48.2	39.3	11.1	14.9	12.8
Iultimedi	Flatatt	34.2	63.2	44.4	20.1	27.1	23.1	27.1	57.3	36.7	4.3	8.9	5.8	33.9	59.8	42.2	12.9	17.6	14.9
	Flatobj	38.3	57.9	46.1	21.8	26.6	24.0	26.4	55.8	35.8	9.1	6.5	7.6	34.1	56.4	42.5	16.3	15.9	16.1
	WASEatt	37.6	66.8	48.1	27.5	33.2	30.1	32.3	63.4	42.8	9.7	11.1	10.3	38.2	67.1	49.1	18.6	21.6	19.9
a	WASE _{obj}	42.8	61.9	50.6	23.5	30.3	26.4	43.1	59.2	49.9	14.5	10.1	11.9	43.0	62.1	50.8	19.5	18.9	19.2