X-Class: Text Classification with Extremely Weak Supervision

NAACL2021

Zihan Wang, Dheeraj Mekala, Jingbo Shang

UCSD

Overview

- Task
 - Text classification with extremely weak supervision, i.e.,only relying on the surface text of class names.

(a) NYT-Topics (b) N

(b) NYT-Locations

Figure 1: Visualizations of News using Average BERT Representations. Colors denote different classes.

- Key insights
 - ideal document representations should lead to very close results between clustering and the desired classification
 - i.e., doc embeddings should reflect class info in clustering

Overview - three modules

Figure 2: An overview of our X-Class. Given a raw input corpus and user-specified class names, we first estimate a class-oriented representation for each document. And then, we align documents to classes with confidence scores by clustering. Finally, we train a supervised model (e.g., BERT) on the confident document-class pairs.

M1: Class-oriented Document Representation

- Class Representation Estimation
 - Weighted average representation based on a ranked list of keywords
 - Incrementally add new keywords to list by ranking similarities of out-of-list words
 - Top-ranked keywords are expected to have more similar static representations to the class representation
 - Stop condition
 - New class rep. Changed the current list OR reach max T
- Document Representation Estimation
 - 4 ways to compute attention weight
 - 2 token rep. + 2 attention mechanisms
 - A unified list of geometric mean of the 4 ranks
 - Assign a weight of 1/r to a token ranked at r-th position

Figure 3: Overview of Our Class Rep. Estimation.

Figure 4: Overview of Our Document Rep. Estimation.

M1: Class-oriented Document Representation

- Class Representation Estimation
 - Weighted average representation based on a ranked list of keywords
 - Incrementally add new keywords to list by ranking similarities of out-of-list words
 - Top-ranked keywords are expected to have more similar static representations to the class representation
 - Stop condition
 - New class rep. Changed the current list OR reach max T
- Document Representation Estimation
 - 4 ways to compute attention weight
 - 2 token rep. + 2 attention mechanisms
 - A unified list of geometric mean of the 4 ranks
 - Assign a weight of 1/r to a token ranked at r-th position

Algorithm 1: Class-Oriented Document Representation Estimation **Input**: n documents D_i , k class names c_i , max number of iterations T, and attention mechanism set M**Output**: Document representations E_i . Compute $t_{i,i}$ (contextualized token rep.) Compute s_w for all words (Eq. 1) // class rep. estimation for $j = 1 \dots k$ do $\mathcal{K}_i \leftarrow \langle c_i \rangle$ for $i = 2 \dots T$ do Compute x_i based on \mathcal{K}_i (Eq. 2) $w = \arg\max_{w \notin \mathcal{K}_i} sim(\mathbf{s}_w, \mathbf{x}_j)$ Compute \mathbf{x}'_i based on $\mathcal{K}_i \oplus \langle w \rangle$ // consistency check if \mathbf{x}'_i changes the words in \mathcal{K}_i then break else $\mathcal{K}_i \leftarrow \mathcal{K}_i \oplus \langle w \rangle$ // document rep. estimation for i = 1 ... n do for attention mechanism $m \in \mathcal{M}$ do Rank $D_{i,i}$ according to m $r_{m,j} \leftarrow$ the rank of $D_{i,j}$ Rank $\tilde{D}_{i,j}$ according to $\prod_{m=1}^{\infty} r_{m,j}$ $r_i \leftarrow$ the final rank $a_i \leftarrow 1/r_i$

M2: Document-Class Alignment & M3: Text Classifier Train

- M2: Document-Class Alignment
 - each document is assigned to its nearest class $L_i = \arg \max_c cos(\mathbf{E}_i, \mathbf{x}_c)$
 - Gaussian Mixture Model (GMM) clustering

- M3: Text Classifier Training
 - select most confident samples to train a text classifier (BERT) using the pseudo labels

Experiments

Table 2: Evaluations of Compared Methods and X-Class. Both micro-/macro- F_1 scores are reported. WeSTClass and ConWea consume at least 3 seed words per class. Supervised provides a kind of upper bound. We are not able to re-run WeSTClass and ConWea on DBpedia due to the large size.

Model	AGNews	20News	NYT-Small	NYT-Topic	NYT-Location	Yelp	DBpedia
Supervised	93.99/93.99	96.45/96.42	97.95/95.46	94.29/89.90	95.99/94.99	95.7/95.7	98.96/98.96
WeSTClass	82.3/82.1	71.28/69.90	91.2/83.7	68.26/57.02	63.15/53.22	81.6/81.6	81.1/ N/A
ConWea	74.6/74.2	75.73/73.26	95.23/90.79	81.67/71.54	85.31/83.81	71.4/71.2	N/A
LOTClass	86.89/86.82	73.78/72.53	78.12/56.05	67.11/43.58	58.49/58.96	87.75/87.68	86.66/85.98
X-Class	84.8/84.65	81.36/80.6	96.67/92.98	80.6/69.92	90.5/89.81	88.36/88.32	91.33/91.14
X-Class-Rep	77.92/77.03	75.14/73.24	92.13/83.94	77.85/65.38	86.7/87.36	77.87/77.05	74.06/71.75
X-Class-Align	83.1/83.05	79.28/78.62	96.34/92.08	79.64/67.85	88.58/88.02	87.16/87.1	87.37/87.28

(a) Our Class-Oriented Document Representations (b) Simple Average of BERT Representations

Figure 5: T-SNE Visualizations of Representations. From left to right: NYT-Topics, NYT-Locations, Yelp.