Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification

AAAI 2019

Motivation

- Relation Classification:
 - Finding the semantic relation between entity mentions in text
- Supervised Learning:
 - Manual labeling is time-consuming
- Distant Supervision:
 - Use the relation of two entities in a Knowledge Base as the semantic relation of two entity mentions in text
 - Introduce noise to labeling
 - Few instances for rare relations

Motivation

- Model RC as Few-shot Learning (FSL)
 Few examples per relation
- Approaches for FSL:
 - Transfer learning: Use information of abundant labels for rare labels
 - Metric Learning: Learn distance distributions among labels
 - Meta Learning: Learn to learn
 - Prototypical networks

Motivation

- Prototypical networks are mainly used for CV
- Challenges for NLP:
 - More diversity
 - More noise
- This paper address:
 - RC with rare instances per class and noisy labels
 - Use prototypical network as a technique to model RC as FSL addressing diversity and noise in prototypical networks

Contributions

- Introducing Two levels of attention:
 - Feature level: Select most useful features for computing prototypes
 - Instance level: Selects most useful instances in support set based on the given query
- Analyzing robustness to noise:
 - Compared to vanilla prototypical network their approach is more robust to noise in labels

Model

Model

• Inputs to model:

$$S = \{ (x_1^1, h_1^1, t_1^1, r_1), \dots, (x_1^{n_1}, h_1^{n_1}, t_1^{n_1}, r_1), \\ \dots \\ (x_m^1, h_m^1, t_m^1, r_m), \dots, (x_m^{n_m}, h_m^{n_m}, t_m^{n_m}, r_m) \}, \\ r_1, r_2, \dots, r_m \in \mathcal{R},$$

- Use CNN to encode the sentences:
- Inputs to CNN:
 - GloVe embedding
 - Position Embedding

Prototypical Network

• Find prototypes:

$$\mathbf{c}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} \mathbf{x}_i^j,$$

• Classify query:

$$p_{\phi}(y = r_i | x) = \frac{\exp\left(-d(f_{\phi}(x), \mathbf{c}_i)\right)}{\sum_{j=1}^{|\mathcal{R}|} \exp\left(-d(f_{\phi}(x), \mathbf{c}_j)\right)},$$

Instance Level Attention

• Compute attention weight for each instance in support set based on the query instance:

$$\alpha_j = \frac{\exp(e_j)}{\sum_{k=1}^{n_i} \exp(e_k)},$$
$$e_j = \sup\left\{\sigma\left(g(\mathbf{x}_i^j) \odot g(\mathbf{x})\right)\right\},$$

• Find Prototypes:

$$\mathbf{c}_i = \sum_{j=1}^{n_i} \alpha_j \mathbf{x}_i^j.$$

Feature Level Attention

 Find attention weight per feature of prototypes:

– 2D CNN

• Find distance of query to prototypes:

$$d(\mathbf{s}_1, \mathbf{s}_2) = \mathbf{z}_i \cdot (\mathbf{s}_1 - \mathbf{s}_2)^2$$

Experiments

- FewRel:
 - Training: 64 relations
 - Dev: 16 relations
 - Test: 20 relations
 - 700 instances per relation
- Noise Level:

Randomly change relation labels to wrong labels

Parameters

Convolutional Window Size m	3
Word Embedding Dimension d_w	50
Position Embedding Dimension d_p	5
Hidden Layer Dimension d_h	230
Batch Size	4
Training Classes for One Batch	20
Initial Learning Rate	0.1
Weight Decay	10^{-5}
Learning Rate Decay γ	0.1

Robustness to noise

Noise Rate	Model	5 Way 5 Shot	5 Way 10 Shot	10 Way 5 Shot	10 Way 10 Shot
0%	Proto Proto-HATT	$\begin{array}{c} 89.05 \pm 0.09 \\ \textbf{90.12} \pm 0.04 \end{array}$	$\begin{array}{c} 90.79 \pm 0.08 \\ 92.06 \pm 0.06 \end{array}$	$\begin{array}{c} 81.46 \pm 0.13 \\ 83.05 \pm 0.05 \end{array}$	$\begin{array}{c} 84.01 \pm 0.13 \\ 85.97 \pm 0.08 \end{array}$
10%	Proto Proto-HATT	$\begin{array}{c} 87.63 \pm 0.10 \\ 88.74 \pm 0.06 \end{array}$	$\begin{array}{c} 90.15 \pm 0.08 \\ 91.45 \pm 0.05 \end{array}$	$\begin{array}{c} 79.39 \pm 0.14 \\ 81.09 \pm 0.08 \end{array}$	$\begin{array}{c} 83.05 \pm 0.12 \\ 85.08 \pm 0.07 \end{array}$
30%	Proto Proto-HATT	$\begin{array}{c} 82.45 \pm 0.09 \\ 84.71 \pm 0.07 \end{array}$	$\begin{array}{c} 87.64 \pm 0.07 \\ 89.59 \pm 0.05 \end{array}$	$\begin{array}{c} 72.43 \pm 0.12 \\ 75.68 \pm 0.11 \end{array}$	$\begin{array}{c} 79.31 \pm 0.11 \\ 82.43 \pm 0.07 \end{array}$
50%	Proto Proto-HATT	$\begin{array}{c} 72.91 \pm 0.15 \\ \textbf{76.57} \pm \textbf{0.07} \end{array}$	$\begin{array}{c} 81.71 \pm 0.10 \\ 85.17 \pm 0.09 \end{array}$	$\begin{array}{c} 61.11 \pm 0.17 \\ \textbf{65.97} \pm \textbf{0.11} \end{array}$	$\begin{array}{c} 71.29 \pm 0.14 \\ \mathbf{76.42 \pm 0.13} \end{array}$

Comparing to Baselines

Model	5 Way 5 Shot	10 Way 5 Shot
Finetune* kNN*	68.66 ± 0.41 68.77 ± 0.41	55.04 ± 0.31 55.87 ± 0.31
Meta Network* GNN* SNAIL* Proto* Proto	$\begin{array}{c} 80.57 \pm 0.48 \\ 81.28 \pm 0.62 \\ 79.40 \pm 0.22 \\ 84.79 \pm 0.16 \\ 89.05 \pm 0.09 \end{array}$	$\begin{array}{c} 69.23 \pm 0.52 \\ 64.02 \pm 0.77 \\ 68.33 \pm 0.25 \\ 75.55 \pm 0.19 \\ 81.46 \pm 0.13 \end{array}$
Proto-IATT Proto-FATT Proto-HATT	$\begin{array}{c} 89.63 \pm 0.08 \\ 89.70 \pm 0.03 \\ 90.12 \pm 0.04 \end{array}$	$\begin{array}{c} 82.16 \pm 0.13 \\ 82.45 \pm 0.05 \\ 83.05 \pm 0.05 \end{array}$

Convergence Speed

Representation Visualization

• Feature Attention:

(a) Features with lower scores. (b) Features with higher scores.

• Sentence encoding with attention:

(c) Emb trained without HATT. (d) Emb trained with HATT.

Question?