Program Synthesis from
Natural Language Using
Recurrent Neural
Networks

Presented by DewiYokelson, April 2019
by XiVictoria Lin & Others


https://pdfs.semanticscholar.org/8ec6/abfdc5009b4e490e975991c871dfeec05434.pdf?_ga=2.94539228.1985688372.1555429457-1112741664.1554928433

* Make programming easier and more productive by letting
programmers use their own words and concepts to express the
intended operation

- Avoid wasted time searching online when the programmer does
not know key words to search or cannot find the answer

- Man pages can be hard to discover and understand




Question 1. I have a bunch of “.zip” files in several directories
“dir1/dir2”, “dir3”, “dir4/dir5”. How would I move them all to
a common base folder? (http://unix.stackexchange.com/questions/
67503)

Natural

Solution: find dirx/ -type f -name "x.zip" -exec mv {}

Language to “basedir" \;

bash Question 2. I have one folder for log with 7 sub-folders. I
want to delete all the files older than 15 days in all folders
including sub-folders without touching folder structure. (http:
//unix.stackexchange.com/questions/155184)

Solution: find . -type f -mtime +15 | xargs rm -f




* Does the translation using recurrent neural networks (RNNs)

: * Aninteractive web page where you type in your natural language
Tel | INAa statement and you receive a ranked list of possible bash one line
commands

* http://tellina.rocks



http://tellina.rocks/

Recurrent

Neural
Networks

« A recurrent neural network

can be thought of as multiple
copies of the same network,
each passing a message to a
SUCCesSOT.

TYY

= |A—{ A A

& 6 o

An unrolled recurrent neural network.

|

|

< to many many to o:c-a many t_ many miny t: mTy
J00 I 100 OO0
t ot 1 t ot ttt
HH HH]  (HHHHD  [HAH]
t ttt bttt ttt
I 000 DOC 0L

* Traditional neural nets accept

fixed sized vectors as input
and produce fixed sized
output, not so with RNNs




- User provides natural language sentence X which Tellina tranforms
into a template

- An RNN encoder-decoder model translates the template into a
ranked list of possible program templates with argument slots

* The argument slots are replaced by program literals to produce an
output program using a k-nearest neighbor classifier

Step 3: argument filling

natural language input:
e p p rO a C X: find all log files older than 15 days ’ nearest-neighbor classification:
; +
‘ synthesized program templates: ) + “loglregex] ,
Y,: find [path)] - -mtime [+ ... s
Step 1: open-vocabulary entity recognition N [path] mame [regex] mtime [Hmespan] log" [+timespan]  + + 4
Y,: find [path] -type f -name [regex] -mtime [+timespan] - - + +
entity mentions: {filename: “log”, . ) ) . .7 “ISdays” [timespan]
timespan: “15 days”} Y3 find [path] -type f -perm [permission] :-+-: .
natural language template: ¥,: find [path] -name [regex] -mtime [+timespan] | - * - “15days” [path]
~ xargs 1s “log” [path] = = . g
Rl e —

X: find all [filename] files older than [timespan] T T “15 days” [regex]

\\ \ 1 l 1 / T T T T T 1 completepmg;ams:

Yr: find . -name “* .log"” -mtime +15

Y>: find . -type f -name “*.log” -mtime +15

Y;: find . -name “*.log” -mtime + 15 | xargsls
)

~

.
>

Step 2: NL template to program template translation




+ Pattern
— File: file name
Directory: directory name
Path: absolute path
Permission: Linux file permission code
Date/Time: date and time expression
Regex: other pattern arguments
+ Quantity
- Number: number
- Size: file size
- Timespan: time duration

Template

Generation * Used a domain-specific heuristic: defined two categories of
entities, patterns and quantities

- To recognize and assign types to natural language commands they
manually defined regexs and mapped them to their type

* To recognize and assign types in the bash command templates
they map man page types to the types above




Algorithm 1: Global entity-slot alignment

Input : List of entities E, list of argument slots S, local
entity-slot compatibility function y (i, j).
Output: List of matched entity-slot pairs M if every entity is
aligned to a slot; null otherwise.
1 M=0;
2 /* compute the preference list for each entity */
3 fore; € E do
4 PriorityQueue S, ;
5 forsj € Sdo
6 if y(i,j) #-inf then
7 | Se;-Enqueue(s;)
8 end
. 9 end
slot alignment
1 /* compute the stable alignment */
12 while Je; s.t. Vsj(ei,sj) € M A Se, # 0 do

Global entity-

13 sj = Se, Dequeue();

14 if Jey s.t. (eyr,sj) € M then

15 if y(i’,j) < y(i,j) then

16 | M=MU{(ei,s))} \ {(eir,sj)}:
17 end

18 else

19 | M= MU {(e;,s))};

20 end

21 end




Program Slot

Filling

- Often a one to one mapping between the entities in NL and the

resulting program

- Tellina aligns the most likely entities using the Global Entity-Slot

Alignment algorithm (previous slide) and then extracts the values
from the NL sentence and inserts them into the program

* Each entity-slot pair (e;,s; ) is represented using the concatenation

of the hidden state vectors (h;,h’;) of the neural encoder-decoder
model

y(i,j) = Z d(i j),(c,d) * v(c,d),
(c,d) ENN(i, j,k)

d(i,j), (c,d) = cos((h;,h}), (he,h))),

1,if (ec,s4) match
0, otherwise

v(c,d) = {



- Labor-intensive data collection process: hired workers to scrape
the web for ultimately just over 5ooo nl-bash pairs

In-scope syntax structures:

« Single command

« Logical connectives: &, | |, parentheses ()

« Nested commands: pipeline |, command substitution $(),
process substitution <()

Out-of-scope syntax structures:

+ 1/O redirection <, <<

« Variable assignment =

+ Parameters $1

« Compound statements: if, for, while, until, blocks, function
definition

+ Regex structure (every string is a single opaque token)

« Non-bash program strings triggered by command inter-
preters such as awk, sed, python, java




Model Accll: Accf: Acc,lr Acc?r
CR Baseline | 13.0% | 20.6% || 54.7% | 67.9%

Tellina Model | 30.0% | 36.0% || 69.4% | 80.0%

Table 2: Translation accuracies of the Tellina model and the code
refrieval haseline.

Eva | U at 10N k | Precision | Recall | F1
1 82.9 87.0 84.9
5 84.6 89.0 86.7
10 82.1 86.2 84.1
100 79.8 84.0 81.9
200 77.2 81.2 79.1

Table 3: Development set performance of the argument filling com-
ponent for differing k nearest neighbor values.




User Study

* Conducted a user study to determine whether Tellina helps

programmers complete file system tasks using bash

- Recruited 39 CS students, all familiar with bash

- Assigned 2 tasksets made up of 8 tasks, for each taskset they were

either allowed to use Tellina or not

* Overall success rate 88%, participants using Tellina on average

used 22% less time and had a 90% success rate over the 85% in
the control group (without Tellina)



Questions?




