Infinite Mixture Prototypes for Few-Shot Learning

Kelsey Allen (MIT), Evan Shelhamer (Berkeley),

Hanul Shin (MIT), Josh Tenenbaum (MIT)

ICML 2019

Review: Neighborhood component analysis

Probability of a data point toward a neighbor

$$p_{ij} = \frac{\exp(\|Ax_i - Ax_j\|^2)}{\sum_{k \neq j} \exp(\|Ax_i - Ax_k\|^2)}.$$

Classification as a marginal probability

$$p_A(y = n | x_i) = \sum_{j: y_j = n} p_{ij}.$$

(2)

(1)

Review: Prototypical network

$$\mu_n = \frac{1}{|S_n|} \sum_{(x_i, y_i) \in S_n} h_\phi(x_i), \tag{3}$$

$$p_{\phi}(y' = n \,|\, x') = \frac{\exp(-d(h_{\phi}(x'), \,\mu_{c_n^*}))}{\sum_{n'} \exp(-d(h_{\phi}(x'), \,\mu_{c_{n'}^*}))} \tag{6}$$

UNDERFITTING

Two extremes

- Prototype/class: k
- Number of instances = Number of training samples

- Prototype/class: 1
- Number of instance = Number of class

Increase the number of prototypes/class

Reduce the number of instances

Review: Infinite Mixture Model

- 1. Init clusters based on training data
- 2. Calculate smallest distance from all points to all centroids
- 3. Make a new cluster if the distance is greater than threshold

Adaptive clustering algorithm based on distance threshold

$$\lambda = 2\sigma \log(\frac{\alpha}{(1+\frac{\rho}{\sigma})^{d/2}}) \tag{5}$$

Where:

 α : is the concentration param of Chinese Restaurant Process

p: measure of the standard deviation of the base distribution from which clusters are assumed to be drawn in the CRP

 σ : cluster variance

Algorithm

Algorithm 1 IMP: support prototypes and query inference **Require:** supports $(x_1, y_1)..., (x_K, y_K)$ and queries $x'_1, ..., x'_{K'}$ **Return:** clusters (μ_c, l_c, σ_c) and query classifications p(y'|x')1. Init. each cluster μ_c with label l_c and $\sigma_c = \sigma_l$ as classwise means of the supports, and C as the number of classes 2. Estimate λ as in Equation 5 3. Infer the number of clusters for each point x_i do for c in $\{1, ..., C\}$ do $d_{i,c} = \begin{cases} \|h_{\phi}(x_i) - \mu_c\|^2 & \text{if } (x_i \text{ is labeled and } l_c = y_i) \\ & \text{or } x_i \text{ is unlabeled} \\ +\infty & \text{otherwise} \end{cases}$ end for If $\min_{c} d_{ic} > \lambda$: set C = C + 1, $\mu_{C} = h_{\phi}(x_{i})$, $l_{C} = y_{i}$, $\sigma_C = \{\sigma_l \text{ if } x_i \text{ labeled, } \sigma_u \text{ otherwise}\}.$ end for 4. Assign supports to clusters by $z_{i,c} = \frac{\mathcal{N}(h_{\phi}(x_i);\mu_c,\sigma_c)}{\sum_c \mathcal{N}(h_{\phi}(x_i);\mu_c,\sigma_c)}$ 5. For each cluster *c*, compute mean $\mu_c = \frac{\sum_i z_{i,c} h_{\phi}(x_i)}{\sum_i z_{i,c}}$ 6. Classify queries by Equation 6

Algorithm 1: Learning cluster variance

- If distance is small, closest instance dominates
- If distance is large, farther instances get involved

Learning cluster variance to better estimate the distance threshold (in the equation 5)

Actually, $\boldsymbol{\sigma}$ is differentiable so learn it from embedding

Algorithm 2: Multi-modal clustering

- End-to-end optimization with non-differentiable λ
 - Soften the clustering
 - α as hyperparameter
- Find the best cluster for class "n"

$$c_n^* \leftarrow \arg\max_{c:l_c=n} \log p(h_\phi(x)|\mu_c, \sigma_c)$$

• Loss function

$$J = \frac{1}{|Q_n|} \sum_{x \in Q_n} \left[-\log p(h_\phi(x) \mid \mu_{c_n^*}, \sigma_{c_n^*}) + \log \sum_{n' \neq n} p(h_\phi(x) \mid \mu_{c_{n'}^*}, \sigma_{c_{n'}^*}) \right].$$

Result(1)

Table 1. Multi-modal clustering and learning cluster variances on fully-supervised 10-way, 10-shot Omniglot alphabet recognition and 5-way, 5-shot mini-ImageNet. Scaling distances with the learned variance gives a small improvement and multi-modal clustering gives a further improvement.

METHOD	σ	MULTI- MODAL	ALPH. ACC.	MINI. ACC.
PROTOTYPES	-	-	65.2 ± 0.6	66.1 ± 0.6
PROTOTYPES	\checkmark	-	65.2 ± 0.6	67.2 ± 0.5
IMP (ours)	\checkmark	\checkmark	$\textbf{92.0}\pm0.1$	$\textbf{68.1}\pm0.8$

Result(2)

Table 2. Learning labeled cluster variance σ_l and unlabeled cluster variance σ_u on semi-supervised 5-way, 1-shot Omniglot and mini-ImageNet with 5 unlabeled points per class and 5 distractors (see Section 4). Learning σ_l, σ_u is better than learning a tied σ for labeled and unlabeled clusters.

METHOD	σ	OMNI. ACC.	MINI. ACC.
TIED	$\sigma \ \sigma_l, \sigma_u$	93.5±0.3	48.6±0.4
IMP (OURS)		98.9 ±0.1	49.6 ±0.8

Result(3)

Figure 3. Learning and inference with IMP is more accurate and robust than DP-means inference on a prototypical network embedding alone. This plot shows the accuracy for the standard benchmark of semi-supervised 5-way, 1-shot Omniglot for different choices of the distance threshold λ for creating a new cluster.