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Few-shot learning

Must train a classifier to recognize new classes given few
examples from each.
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Relation network--classifying by comparison

Relation network (RN) compares support images and query
images and makes classification according to the returned

“relation scores”
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Discussion: Converting classification task into retrieval task?



Relation network--classifying by comparison

Relation network (RN) learn to compare with meta-learning:
to mimic the comparison procedure on the training set and learn

the model. In each episode
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Relation network--structure
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Figure 1: Relation Network architecture with a 5-way 1-shot 1-query example.

rij = 9o(C(fo (i), fo(z5))), i=1,2,...,C



Relation network--structure
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Figure 1: Relg#6n Network architecture with a 5-way 1-shot 1-query example.

rij = 9o(C(fo (i), fo(z5))), i=1,2,...,C

1; j is bounded between (0,1) by sigmoid function



Relation network--structure
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Figure 1: Relg#6n Network architecture with a 5-way 1-shot 1-query example.

rij = 9o(C(fo (i), fo(z5))), i=1,2,...,C

Optimization target: ¢, ¢« argmin » ) (r;; — 1(y; ==y;))*
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Relation network--structure
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Figure 1: Relation Network architecture with a 5-way 1-shot 1-query example.

A detail for K-shot: K embedded features are
pooled by pixel-wise sum operation



Relation network--structure

(a) Convolutional Block  (b) Naive RN for few-shot leaming
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(d) Deeper RN for few-shot learning
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Extension to 0-shot learning: different embedding module for sample and query images
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Experiments

Model Fine Tune S-way Acc. 20-way Acc.

1-shot S-shot 1-shot 5-shot
MANN | ] N 82.8% 94.9% - -
CONVOLUTIONAL SIAMESE NETS [ /] N 96.7% 98.4% 88.0% 96.5%
CONVOLUTIONAL SIAMESE NETS | ] Y 97.3% 98.4% 88.1% 97.0%
MATCHING NETS [ '] N 98.1% 98.9% 93.8% 98.5%
MATCHING NETS | '] Y 97.9% 98.7% 93.5% 98.7%
SIAMESE NETS WITH MEMORY [ ] N 98.4% 99.6% 95.0% 98.6%
NEURAL STATISTICIAN [ ] N 98.1% 99.5% 93.2% 98.1%
META NETS [ ] N 99.0% - 97.0% -
PROTOTYPICAL NETS [ '] N 98.8% 99.7% 96.0% 98.9%
MAML | 1] Y 98.7 4+ 0.4% 99.9 4+ 0.1% 95.8 4+ 0.3% 98.9 4+ 0.2%
RELATION NET N 99.6 + 0.2% 9984 0.1% 97.6 + 0.2% 991+ 0.1%

Table 1: Omniglot few-shot classification. Results are accuracies averaged over 1000 test episodes and with 95% confidence intervals
where reported. The best-performing method is highlighted, along with others whose confidence intervals overlap. -’: not reported.



Why does RN work?

Both deep feature embedding and deep distance metric
are learnable.

The concatenation operation is in relatively bottom layer

When training a Siamese network or a triplet network, we apply
metric constraint on a specified feature and then use the Euclidean
distance (or other fixed metric) for metric for inference.



Why does RN work?
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Figure 3: Anexample relation learnable by Relation Network and
not by non-linear embedding + metric learning.

2D data space



Why does RN work?

J

Figure 4: Example Omniglot few-shot problem visualisations.
Left: Matched (cyan) and mismatched (magenta) sample embed-
dings for a given query (yellow) are not straightforward to dif-
ferentiate. Right: Matched (yellow) and mismatched (magenta)
relation module pair representations are linearly separable.

The feature embeddings
are difficult to separate.

The relation module pair
representations are linearly
separable



Why does RN work? My guess

1)Feature concatenation operation in very early
stage (bottom layers)

2)K sample images to mimic the K-shot

3) Converting classification to “comparison”,
which is a semi-parameter model approach.





