Learning to Compare: Relation Network for Few-Shot Learning

Flood Sung Yongxin Yang¹ Li Zhang^{1,2} Tao Xiang¹ Philip H.S. Torr² Timothy M. Hospedales³ ¹Queen Mary University of London ²University of Oxford ³The University of Edinburgh floodsung@gmail.com {yongxin.yang, david.lizhang, t.xiang}@qmul.ac.uk philip.torr@eng.ox.ac.uk t.hospedales@ed.ac.uk

> Few-shot learning Meta-learning

https://www.slideshare.net/SimonJohn21/learning-to-compare-relation-network-for-few-shot-learning

Must train a classifier to recognize new classes given few examples from each.

Train set (Relatively large) Support set (Relatively small)

Test set

Must train a classifier to recognize new classes given few examples from each.

Relation network--classifying by comparison

Relation network (RN) compares support images and query images and makes classification according to the returned "relation scores"

Discussion: Converting classification task into retrieval task?

Relation network--classifying by comparison

Relation network (RN) learn to compare with meta-learning: to mimic the comparison procedure on the training set and learn the model. In each episode

Train set

Relation network--classifying by comparison

Relation network (RN) learn to compare with meta-learning: to mimic the comparison procedure on the training set and learn the model. In each episode

Figure 1: Relation Network architecture with a 5-way 1-shot 1-query example.

$$r_{i,j} = g_{\phi}(\mathcal{C}(f_{\varphi}(x_i), f_{\varphi}(x_j))), \quad i = 1, 2, \dots, C$$

 $r_{i,j}$ is bounded between (0,1) by sigmoid function

Figure 1: Relation Network architecture with a 5-way 1-shot 1-query example.

A detail for K-shot: K embedded features are pooled by pixel-wise sum operation

Detailed structure

Extension to 0-shot learning: different embedding module for sample and query images

Semantic vector

images

Experiments

Model	Fine Tune	5-way Acc.		20-way Acc.	
		1-shot	5-shot	1-shot	5-shot
MANN [31]	N	82.8%	94.9%	1 4 3	5 4 3
CONVOLUTIONAL SIAMESE NETS [18]	N	96.7%	98.4%	88.0%	96.5%
CONVOLUTIONAL SIAMESE NETS [18]	Y	97.3%	98.4%	88.1%	97.0%
MATCHING NETS [38]	N	98.1%	98.9%	93.8%	98.5%
MATCHING NETS [38]	Y	97.9%	98.7%	93.5%	98.7%
SIAMESE NETS WITH MEMORY [16]	N	98.4%	99.6%	95.0%	98.6%
NEURAL STATISTICIAN [8]	N	98.1%	99.5%	93.2%	98.1%
META NETS [26]	N	99.0%	-	97.0%	-
PROTOTYPICAL NETS [35]	N	98.8%	99.7%	96.0%	98.9%
MAML [10]	Y	$98.7\pm0.4\%$	$\textbf{99.9} \pm \textbf{0.1\%}$	$95.8\pm0.3\%$	$98.9\pm0.2\%$
RELATION NET	N	$\textbf{99.6} \pm \textbf{0.2\%}$	99.8± 0.1%	$\textbf{97.6} \pm \textbf{0.2\%}$	$99.1 \pm 0.1\%$

Table 1: Omniglot few-shot classification. Results are accuracies averaged over 1000 test episodes and with 95% confidence intervals where reported. The best-performing method is highlighted, along with others whose confidence intervals overlap. '-': not reported.

Both deep feature embedding and deep distance metric are learnable.

The concatenation operation is in relatively **bottom layer**

When training a Siamese network or a triplet network, we apply metric constraint on a specified feature and then use the Euclidean distance (or other fixed metric) for metric for inference.

Why does RN work?

2D data space

Figure 3: An example relation learnable by Relation Network and not by non-linear embedding + metric learning.

Why does RN work?

The feature embeddings are difficult to separate.

The relation module pair representations are linearly separable

Figure 4: Example Omniglot few-shot problem visualisations. Left: Matched (cyan) and mismatched (magenta) sample embeddings for a given query (yellow) are not straightforward to differentiate. Right: Matched (yellow) and mismatched (magenta) relation module pair representations are linearly separable. 1)Feature concatenation operation in very early stage (bottom layers)

2)K sample images to mimic the K-shot

3) Converting classification to "comparison", which is a semi-parameter model approach.